The grasping and manipulation of objects, especially when they are heavy with respect to the hand power capability, requires the synthesis of grasp configurations that explicitly take into account the dynamic properties of the object. Specifically, suitable grasp configurations reducing gravitational and inertial effects during object manipulation, and minimizing and equally distributing the grasping forces among all the available fingers, must be computed. A new method for fast synthesis of multi-fingered grasp configurations is proposed in this paper. In particular, to reduce the computational complexity, all the regions of the object surface favoring the synthesis of minimal inertia grasps are evaluated first. Then, a reduced number of discrete grasping regions are selected on the basis of the fingertip size, model uncertainty, and surface curvature. Finally, an exhaustive search of the optimal grasp configurations with respect to the grasp quality is performed. Several case studies and comparisons with other methods are proposed to demonstrate the effectiveness of the proposed approach.
Multi-fingered grasp synthesis based on the object dynamic properties / Lippiello, Vincenzo; Siciliano, Bruno; Villani, Luigi. - In: ROBOTICS AND AUTONOMOUS SYSTEMS. - ISSN 0921-8890. - 61:6(2013), pp. 626-636. [10.1016/j.robot.2013.02.003]
Multi-fingered grasp synthesis based on the object dynamic properties
LIPPIELLO, VINCENZO;SICILIANO, BRUNO;VILLANI, LUIGI
2013
Abstract
The grasping and manipulation of objects, especially when they are heavy with respect to the hand power capability, requires the synthesis of grasp configurations that explicitly take into account the dynamic properties of the object. Specifically, suitable grasp configurations reducing gravitational and inertial effects during object manipulation, and minimizing and equally distributing the grasping forces among all the available fingers, must be computed. A new method for fast synthesis of multi-fingered grasp configurations is proposed in this paper. In particular, to reduce the computational complexity, all the regions of the object surface favoring the synthesis of minimal inertia grasps are evaluated first. Then, a reduced number of discrete grasping regions are selected on the basis of the fingertip size, model uncertainty, and surface curvature. Finally, an exhaustive search of the optimal grasp configurations with respect to the grasp quality is performed. Several case studies and comparisons with other methods are proposed to demonstrate the effectiveness of the proposed approach.| File | Dimensione | Formato | |
|---|---|---|---|
|
ras2013_gs.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
2.33 MB
Formato
Adobe PDF
|
2.33 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


