A legged robot needs to move in unstructured environments continuously subject to disturbances. Existing disturbance observers are not enough when significant forces act on both the center of mass and the robot’s legs, and they usually employ indirect measures of the floating base’s velocity. This paper presents a solution combining a momentum-based observer for the angular term and an acceleration-based observer for the translational one, employing directly measurable values from the sensors. Due to this combination, we define this observer as ”hybrid,” and it can detect disturbances acting on both the legged robot’s center of mass and its legs. The estimation is employed in a whole-body controller. The framework is tested in simulation on a quadruped robot subject to significant disturbances, and it is compared with existing observer-based techniques.

Disturbance rejection for legged robots through a hybrid observer

Morlando V.
;
Ruggiero F.
2022

Abstract

A legged robot needs to move in unstructured environments continuously subject to disturbances. Existing disturbance observers are not enough when significant forces act on both the center of mass and the robot’s legs, and they usually employ indirect measures of the floating base’s velocity. This paper presents a solution combining a momentum-based observer for the angular term and an acceleration-based observer for the translational one, employing directly measurable values from the sensors. Due to this combination, we define this observer as ”hybrid,” and it can detect disturbances acting on both the legged robot’s center of mass and its legs. The estimation is employed in a whole-body controller. The framework is tested in simulation on a quadruped robot subject to significant disturbances, and it is compared with existing observer-based techniques.
978-1-6654-0673-4
File in questo prodotto:
File Dimensione Formato  
C40.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/895200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact