The increasing concern of global warming due to the ever-increasing amount of greenhouse gases (GHG) such as carbon dioxide (CO2) and pollutant emissions induces regulatory authorities to stricter emission legislation in the transportation sector. In this context, renewable fuels, such as methanol and ethanol, are considered a promising solution to mitigate the carbon footprint and reduce engine-out emissions. Based on the several studies published in the specific literature, this work aims to summarise and normalize the main outcomes, highlighting the pro and cons of exerting alcohol fuels in compression ignition engines through a critical literature review for helping the researchers, who start to work on these applications. Both dual-fuel and direct-injection fuelling concepts of diesel and alcohol (ethanol and methanol) in compression ignition engines are discussed. Analyses on the combustion, emissions and performance and CO2 are carried out. Depending on the fuel supply method and the engine type, the use of alcohol fuels performs differently in terms of emissions and engine performance. Dual Fuel combustion mode, port fuel injected alcohol, and direct-injected diesel emits higher HC and CO, while diesel-alcohol blends perform as diesel. Generally, the blends characterized by lower alcohol concentration than dual-fuel perform higher indicated thermal efficiencies. Significant benefits on NOx-soot trade-offs are observed, independently on the fuelling mode, NOx concentration, and engine type by using alcohols. The soot reduction reaches values up to 70%, and the lower carbon content of alcohols fuel reduces the CO2 up to 15%.

Alcohol Fuels in Compression Ignition Engines / Pipicelli, M.; Di Luca, G.; Ianniello, R.; Gimelli, A.; Beatrice, C.. - (2022), pp. 9-31. [10.1007/978-981-16-8751-8_2]

Alcohol Fuels in Compression Ignition Engines

Pipicelli M.;Gimelli A.;
2022

Abstract

The increasing concern of global warming due to the ever-increasing amount of greenhouse gases (GHG) such as carbon dioxide (CO2) and pollutant emissions induces regulatory authorities to stricter emission legislation in the transportation sector. In this context, renewable fuels, such as methanol and ethanol, are considered a promising solution to mitigate the carbon footprint and reduce engine-out emissions. Based on the several studies published in the specific literature, this work aims to summarise and normalize the main outcomes, highlighting the pro and cons of exerting alcohol fuels in compression ignition engines through a critical literature review for helping the researchers, who start to work on these applications. Both dual-fuel and direct-injection fuelling concepts of diesel and alcohol (ethanol and methanol) in compression ignition engines are discussed. Analyses on the combustion, emissions and performance and CO2 are carried out. Depending on the fuel supply method and the engine type, the use of alcohol fuels performs differently in terms of emissions and engine performance. Dual Fuel combustion mode, port fuel injected alcohol, and direct-injected diesel emits higher HC and CO, while diesel-alcohol blends perform as diesel. Generally, the blends characterized by lower alcohol concentration than dual-fuel perform higher indicated thermal efficiencies. Significant benefits on NOx-soot trade-offs are observed, independently on the fuelling mode, NOx concentration, and engine type by using alcohols. The soot reduction reaches values up to 70%, and the lower carbon content of alcohols fuel reduces the CO2 up to 15%.
2022
978-981-16-8750-1
978-981-16-8751-8
Alcohol Fuels in Compression Ignition Engines / Pipicelli, M.; Di Luca, G.; Ianniello, R.; Gimelli, A.; Beatrice, C.. - (2022), pp. 9-31. [10.1007/978-981-16-8751-8_2]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/873718
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? ND
social impact