This paper presents new theorems, which allow to design in a unified way robust proportional-derivative (PD)-type control laws without chattering for a broad class of uncertain nonlinear multi-input multi-output (MIMO) systems, subject to bounded disturbances and noises, of great theoretical and engineering relevance. These controllers are used to track a reference signal with bounded second derivative with the tracking error norm smaller than a prescribed value. The proposed control laws are simple to design and implement, above all for robotic systems, both in the case of a trajectory assigned in the joint space and in the workspace. The obtained theoretical results can have numerous applications. In this paper four significant applications are provided. The first one concerns the solution of a nonlinear equations system or the determination of an equilibrium point of a nonlinear system. The second case study deals with the inversion of a nonlinear vectorial function or the kinematic inversion of a robot. The third application concerns: (A) the tracking control of a robot with parametric uncertainties, with and without measurement noise on velocity, both in the joint space and the workspace; (B) the impedance control of a robot interacting with a human operator. The fourth case study addresses the tracking control of an uncertain nonlinear system that does not belong to the class of mechanical systems. Finally, an appendix is included, providing six easy examples, which show how the results proposed in the paper can eliminate and/or reduce serious disadvantages existing in the robust control literature for significant classes of linear and nonlinear uncertain systems.

A unified approach to design robust controllers for nonlinear uncertain engineering systems / Celentano, Laura. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 8:11(2018). [10.3390/app8112236]

A unified approach to design robust controllers for nonlinear uncertain engineering systems

Laura Celentano
2018

Abstract

This paper presents new theorems, which allow to design in a unified way robust proportional-derivative (PD)-type control laws without chattering for a broad class of uncertain nonlinear multi-input multi-output (MIMO) systems, subject to bounded disturbances and noises, of great theoretical and engineering relevance. These controllers are used to track a reference signal with bounded second derivative with the tracking error norm smaller than a prescribed value. The proposed control laws are simple to design and implement, above all for robotic systems, both in the case of a trajectory assigned in the joint space and in the workspace. The obtained theoretical results can have numerous applications. In this paper four significant applications are provided. The first one concerns the solution of a nonlinear equations system or the determination of an equilibrium point of a nonlinear system. The second case study deals with the inversion of a nonlinear vectorial function or the kinematic inversion of a robot. The third application concerns: (A) the tracking control of a robot with parametric uncertainties, with and without measurement noise on velocity, both in the joint space and the workspace; (B) the impedance control of a robot interacting with a human operator. The fourth case study addresses the tracking control of an uncertain nonlinear system that does not belong to the class of mechanical systems. Finally, an appendix is included, providing six easy examples, which show how the results proposed in the paper can eliminate and/or reduce serious disadvantages existing in the robust control literature for significant classes of linear and nonlinear uncertain systems.
2018
A unified approach to design robust controllers for nonlinear uncertain engineering systems / Celentano, Laura. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 8:11(2018). [10.3390/app8112236]
File in questo prodotto:
File Dimensione Formato  
Paper 5 - Copia.pdf

accesso aperto

Descrizione: Paper Pubblicato
Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 3.78 MB
Formato Adobe PDF
3.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/760644
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact