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Featured Application: Design and realization of robust, simple and effective controllers, mainly
for the transportation and manufacturing systems.

Abstract: This paper presents new theorems, which allow to design in a unified way robust
proportional-derivative (PD)-type control laws without chattering for a broad class of uncertain
nonlinear multi-input multi-output (MIMO) systems, subject to bounded disturbances and noises,
of great theoretical and engineering relevance. These controllers are used to track a reference signal
with bounded second derivative with the tracking error norm smaller than a prescribed value.
The proposed control laws are simple to design and implement, above all for robotic systems,
both in the case of a trajectory assigned in the joint space and in the workspace. The obtained
theoretical results can have numerous applications. In this paper four significant applications are
provided. The first one concerns the solution of a nonlinear equations system or the determination
of an equilibrium point of a nonlinear system. The second case study deals with the inversion of a
nonlinear vectorial function or the kinematic inversion of a robot. The third application concerns: (A)
the tracking control of a robot with parametric uncertainties, with and without measurement noise on
velocity, both in the joint space and the workspace; (B) the impedance control of a robot interacting
with a human operator. The fourth case study addresses the tracking control of an uncertain nonlinear
system that does not belong to the class of mechanical systems. Finally, an appendix is included,
providing six easy examples, which show how the results proposed in the paper can eliminate and/or
reduce serious disadvantages existing in the robust control literature for significant classes of linear
and nonlinear uncertain systems.

Keywords: general robust tracking control method; design of robust proportional-derivative-type
controller; practical robust stability; robust control of mechanical uncertain systems; impedance
control of a robot

1. Introduction

Since a kilowatt-hour of electrical energy transformed into mechanical energy can produce
an impressive amount of human work, current and future well-being depend primarily on
automatic systems concerning many key areas for humanity, including the transportation and
manufacturing systems.

Hence, it is of great relevance to develop control algorithms that can be easily implemented using
modern digital and wireless technologies to force electromechanical systems to behave like skilled
workers who work quickly, accurately, and cheaply despite parametric variations, nonlinearities, and
persistent disturbances. In particular, special attention has been paid to solving robust tracking control
problems, which resulted in a considerable number of publications (see, e.g., [1–43] and references
therein). However, there exist many results obtained under the following simplified hypotheses, which
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are not always realistic and feasible: (1) exact knowledge of the controlled system is assumed; (2)
actuators are considered ideal; and (3) signals are assumed measurable without noises, therefore, ideal
or almost ideal derivative actions can be used.

The robust tracking control mostly uses the well-known feedback linearization, inverse model
and model predictive control (MPC) techniques.

Feedback linearization is the process of determining a feedback law and a change of coordinates
that transform a nonlinear system into a linear and controllable one.

Inverse modeling is a general mathematical method to determine unknown causes on the basis
of observation of their effects, as opposed to modeling of direct problems whose solution involves
finding effects on the basis of a description of their causes.

MPC is a very popular controller design method in the process industry for discrete-time models.
Taking also into account that the computation time for feedback linearization or control signal

generation by the inverse model or MPC techniques is non-negligible, these simplified hypotheses
make the above mentioned techniques not always reliable (see [4–6,8,10,14,15,20,23–25,29,31,33,37,40,41].
In some cases, the control system can even be unstable, as can be verified with simple examples (see
also Appendix A). Furthermore, the control techniques using high-frequency and high-amplitude
control signals do not yield good performance (see also Appendix A).

To avoid the aforementioned problems, various modifications of the inverse model and feedback
linearization techniques have been proposed, for instance, a computed-torque-like control with
variable-structure compensation (see [20,25,26]), which is, however, difficult to design and implement
and also presents high-frequency oscillations (see also Appendix A).

Thus, there is still a demand for smooth robust controllers that allow a plant belonging to a
broad class of nonlinear uncertain systems, including electromechanical ones, to track a sufficiently
smooth reference signal with a tracking error norm smaller than a prescribed value, despite the
presence of disturbances and parametric and structural uncertainties, using real actuators and real
derivative actions.

In some previous author’s contributions (see [21,34,35]) some control methodologies of MIMO
uncertain linear systems and of a class of MIMO nonlinear uncertain systems have been provided in
order to design simple controllers: state feedback controller with integral action, a pseudo-PD and
pseudo-proportional-integral-derivative (pseudo-PID) to track sufficiently smooth trajectories with an
a priori given maximum error.

Moreover, in [38], for three classes of uncertain nonlinear MIMO systems, that are wider with
respect to [21,34,35], including several manufacturing systems and land, sea and air transportation
systems, subject to nonstandard disturbances and noises, some theorems are proved, that allow to
design pseudo-PID controllers to track a sufficiently smooth reference signal with the tracking error
norm smaller than a prescribed value.

This paper, for a broad class of uncertain nonlinear MIMO systems much more general with
respect to [34,35,38], provides a new and unified approach to design robust PD-type control laws
without chattering to track a reference signal with bounded second derivative with the tracking error
norm smaller than a prescribed value, despite the presence of bounded disturbances, parametric and
structural uncertainties, and bounded measurement noises. With respect to [34], it is also proved that
the proposed control laws are robust with respect to bounded measurement noises.

With reference to the mechanical and transportation systems, this theory can be successfully
applied when the controller uses as information: signals related to the joint space (obtainable with
encoders, resolvers, or tachometric dynamos, for example) or signals related to the workspace (e.g.,
obtainable with cameras, sonar, or global positioning system (GPS)). Moreover, the proposed results
are very useful also for the control of human-machine interaction (see e.g., [8,15,28]).



Appl. Sci. 2018, 8, 2236 3 of 42

The proposed control laws are based on the concept of majorant systems and result in establishing
asymptotic bounds for the tracking error and its first derivative. The proposed controller design is
based on two parameters. The first parameter is related to the minimum eigenvalue of a suitable
matrix, on which the practical stability depends. The second parameter is easily related to the practical
asymptotic stability region, the desired maximum tracking error norm, and its convergence velocity.
If the tracked trajectories are not sufficiently smooth, suitable filtering laws are proposed to facilitate
the implementation of the control laws and reduce the control magnitude, particularly during the
transient phase.

The designed controllers using the developed majorant systems technique allow one to obtain,
in general, less conservative results; i.e., the actual tracking error is quite close to the error computed
with the proposed methodology, unlike many other approaches based on unsuitable Lyapunov
functions. This enables one to avoid significant technological problems such as, e.g., oversized
amplifiers and actuators.

The obtained theoretical results can be successfully applied to numerous theoretical and
engineering applications (e.g., control of: rolling mills, conveyor belts, automatic guided vehicles
(AGVs), unicycles, cars, trains, ships, airplanes, drones, missiles, satellites, manufacturing
robots—welding, painting, assembly, pick and place for printed circuit boards, packaging and labeling,
palletizing, product inspection, and testing-, surgical robots).

The above systems are of great engineering relevance, e.g., nowadays AGVs have revolutionized
the logistics and production organization, as they are innovative, versatile and cheap mobile robots
very used in various processes (production and management of warehouses) for the loading, unloading,
and/or transportation purposes.

All the above mentioned systems fall into the considered broad class of systems and, therefore,
can be effectively and simply controlled with the proposed laws in realistic situations and also by
technicians not expert in the control field (see the easy and efficient control of the simple AGV
considered in the Appendix A and, above all, the second and third applications in the paper).

Concerning this, in the paper four significant applications are provided.
The first one concerns the solution of a nonlinear equations system or the determination of an

equilibrium point of a nonlinear systems. The second case study deals with the inversion of a nonlinear
vectorial function or the kinematic inversion of a robot. The third application concerns: (A) the tracking
control of a robot with parametric uncertainties, with and without measurement noise on velocity,
both in the joint space and the workspace; and (B) the impedance control of a robot interacting with
a human operator. The fourth case study addresses the tracking control of an uncertain nonlinear
system that does not belong to the class of mechanical systems and to the classes of systems considered
in [34,35,38].

Finally, it is included an appendix in which six easy examples are provided. The first five ones clearly
show how numerous control techniques available in the literature (e.g., [10,14,15,20,23–25,29,31,33,41–43]
and the references therein) for significant classes of linear and nonlinear systems can produce
unstable control system or can significantly reduce the performance of the control system, under
the following realistic hypotheses: parametric uncertainties, real actuators, measurement noise, finite
online computation time of the control signal.

The sixth example shows that the above mentioned disadvantages can be eliminated and/or
reduced with the results proposed in the paper.

This paper is organized as follows. The considered class of systems, the problem statement and
theoretical background, including the majorant systems technique and some theorems useful to easily
determine a majorant system of a nonlinear uncertain system with bounded uncertainties, are given in
Section 2. Section 3 provides the main results, including the tracking control law and the corresponding
tracking error bounds. Four case studies, of theoretical and engineering relevance, are presented in
Section 4. Section 5 outlines the main contributions and future developments. Finally, an appendix
provides simple five counter-examples and a sixth example, that shows the utility of the proposed
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results to eliminate and/or reduce serious disadvantages existing in the robust control literature in
the presence of parametric uncertainties, real actuators, measurement noise, finite online computation
time of the control signal, thus concluding this paper.

2. Problem Formulation and Preliminaries

Consider the uncertain nonlinear dynamic system, much more general with respect to [34,35,38]:

..
y = F(t, y,

.
y, p)u + f (t, y,

.
y, d, p) (1)

where t ∈ T = [0, t f ] ⊆ R is the time, y ∈ Y ⊂ Rm is the output,
.
y ∈ Yp ⊂ Rm, u ∈ U ⊂ Rr is the

input, d ∈ D ⊂ Rh is a bounded disturbance, p ∈ ℘ ⊂ Rµ is the vector of the uncertain parameters,
F ∈ Rm×r is a nonlinear bounded matrix function of rank m and f ∈ Rm is a nonlinear vector function
satisfying the following conditions.

(1) Positivity condition: there exists a matrix G ∈ Rr×m such that:

λmin(FG + GT FT) ≥ 2 (2)

(2) Bounding condition of class Kγ0 : there exists a continuous function ϕγ0 : R+
0 → R+

0 , non
decreasing and with initial value γ0 ≥ 0, said of class Kγ0 , such that (see Figure 1).

‖ f ‖ ≤ ϕγ0(‖ξ‖), ξ =

[
y
.
y

]
(3)
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There exist several classes of systems whose models, after:

(a) a possible appropriate changing of variable and/or;
(b) the use of a possible appropriate compensation signal dependent on t, y,

.
y and/or;

(c) possible appropriate mathematical steps by using the derivative of Lie, are of type (1). In the
following five significant classes of the above systems are reported.

Class 1. Note that many mechanical systems with m degrees of freedom (e.g., cars, trains, conveyor belts,
manufacturing machineries, and the Cartesian robots) are described by the equation:

M(p)
..
q + Ka(p)

.
q + Ke(p)q = Tu(q)u + g(q, p) + Td(q)d (4)
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where q ∈ Rm is the generalized coordinate vector, u ∈ Rr is the generalized control forces vector, g ∈ Rm is
the generalized gravity forces vector, d ∈ Rh is the generalized disturbance forces vector, M, Ka, Ke ∈ Rm×m,
Tu ∈ Rm×r with rank(Tu) = m, Td ∈ Rm×h are, respectively, the inertia matrix, damping matrix, stiffness
matrix and transmission matrices of the generalized forces u and d and, finally, p ∈ ℘ ⊂ Rµ is the vector of the
uncertain parameters. It can be readily verified that the mechanical system (4) is of type (1) and can satisfy the
conditions (2) and (3).

Class 2. Note that many mechanical systems with m degrees of freedom are described by the equation:

M(p)
.
v + Ka(p)v = u + γ (5)

where v ∈ Rm is the velocity vector, u ∈ Rm is the generalized control forces vector, γ ∈ Rm is the generalized
gravity and disturbance forces vector, M, Ka ∈ Rm×m are, respectively, the inertia matrix and damping matrix,
and p ∈ ℘ ⊂ Rµ is the vector of the uncertain parameters.

By activating system (5) with a real actuator described by equation:

.
u = Aa(pa)u + Ba(pa)υ + Ca(pa)v (6)

where υ ∈ Rm is the actuator input (e.g., the actuator supply voltage), Aa ∈ Rm×m is the dynamic
matrix, Ba ∈ Rm×m is the input matrix of full rank, Ca ∈ Rm×m is the interaction matrix, and
pa ∈ ℘a ⊂ Rµa is the vector of the uncertain parameters.

Combining the Equations (5) and (6) yields:

M
..
v + Ka

.
v =

.
u +

.
γ = Aau + Baυ + Cav +

.
γ = Aa(M

.
v + Kav− γ) + Baυ + Cav +

.
γ (7)

from which:
M

..
v + (Ka − Aa M)

.
v−

(
AaKa + Ca)v = Baυ +

.
γ− Aaγ (8)

It is easy to verify that the electromechanical system (8) is of type (1) and that it can satisfy
conditions (2) and (3).

Class 3. Note that many robots, satellites, drones, and ships with m degrees of freedom can be represented by the
equation:

M(q, p)
..
q + Ka(q,

.
q, p)

.
q + Ke(q, p)y = Tu(q)u + g(q, p) + Td(q)d (9)

where q ∈ Rm is the generalized coordinate vector, u ∈ Rr is the generalized control forces vector, g ∈ Rm is the
generalized gravity forces vector, d ∈ Rh is the generalized disturbance forces vector, M(q, p) ∈ Rm×m is the
inertia matrix, Ka(q,

.
q, p)

.
q is the vector of the damping, centrifugal and Coriolis forces, Ke(q, p)q is the vector

of the possible stiffness forces, Tu(q) ∈ Rm×r with rank(Tu) = m, Td(q) ∈ Rm×h are transmission matrices of
the generalized forces u and d, and, finally, p ∈ ℘ ⊂ Rµ is the vector of the uncertain parameters.

It is easy to verify that system (9) is of type (1) and that it can satisfy conditions (2) and (3).

Class 4. Consider the system:

.
x = A(p)x + B(x, p)u + g(t, x, d, p)
y = C(p)x

(10)

where x ∈ R2m is the state, u ∈ Rm is the input, y ∈ Rm is the output, d ∈ Rh is the disturbance, A, B, C are
matrices of appropriate dimensions, g(t, x, p) ∈ Rn is a nonlinear vector function and p ∈ ℘ ⊂ Rµ is the vector
of the uncertain parameters. If:

CB = 0, Cg = 0, rank(MO) = 2m, where MO =

[
C

CA

]
(11)
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it is:
.
y = C(p)A(p)x, x = M−1

O

[
y
.
y

]
(12)

..
y = C(p)A(p)(A(p)x + B(x, p)u + g(t, x, d, p)) =

= C(p)A(p)

(
A(p)M−1

O

[
y
.
y

]
+ B

(
M−1

O

[
y
.
y

]
, p

)
u + g

(
t, M−1

O

[
y
.
y

]
, d, p

))
=

= F(y,
.
y, p)u + f (t, y,

.
y, d, p)

(13)

It can be readily verified that system (13) is of type (1) and it can satisfy conditions (2) and (3).

Class 5. Consider the transformation:

x(t) = c(q(t)), q ∈ Rm, x ∈ Rm (14)

e.g., the coordinate transformation between the joint space and the workspace of a robot or consider the nonlinear
equation c(q) = x = constant.

Let x(t) a generic trajectory r(t) with bounded second derivative, it is:

ε = r− c(q),
.
ε =

.
r− J(q)

.
q, where J(q) = ∂c/∂q is the Jacobian matrix of c(q) (15)

Moreover:
..
ε = −J(q)

..
q +

..
r− Jp(q,

.
q)

.
q, where Jp(q,

.
q) = dJ(q)/dt (16)

By setting
..
q = J−1(q)u, q = c−1(r− ε),

.
q = J−1(c−1(r− ε)

)
(

.
r− .

ε) it can be verified that (16) is
of type

..
ε = −u + f (t, ε,

.
ε,

..
ε), f =

..
r− Jp

(
c−1(r− ε), J−1

(
c−1(r− ε)

)
(

.
r− .

ε)
)

J−1
(

c−1(r− ε)
)
(

.
r− .

ε) (17)

Hence the model of the inversion error of the transformation x(t) = c(q(t)) is of type (1), satisfies
condition (2), and it can satisfy condition (3).

A possible control law, to force plant (1) to track a reference signal r(t) ∈ Rm with bounded second
derivative, is:

u(t) = G(t, y,
.
y)
(

2a2e(t) + 2a
.
e(t)

)
+ uc (18)

where e(t) = r(t) − y(t), G ∈ Rr×m, a ∈ R+ and uc is a possible compensation signal, e.g.,

uc = F†(t, ζ, p̂)
(..

r− f (t, ζ, d̂, p̂)
)

where ζ =
[

yT .
yT

]T
or ζ =

[
rT .

rT
]T

, F† = FT(FFT)
−1 is

the pseudo-inverse of F and p̂, d̂ are the nominal values of p, d.

Remark 1. A reference signal r(t) with bounded second derivative can be obtained by interpolating a set of
given points (tk, rk), k = 0, 1, . . . , n with quadratic or cubic splines or by filtering any piecewise constant or
piecewise linear signal r̃(t) with the following MIMO filter:

.
ζ =

 0 I 0
0 0 I
− f1 I − f2 I − f3 I

ζ +

 0
0

f1 I

r̃,

 r
.
r
..
r

 =

 I 0 0
0 I 0
0 0 I

ζ (19)

In this way, since
.
r(t) is available, the derivative action of the controller can be avoided, if

.
y(t) is measurable.

Moreover, by suitably choosing the initial conditions of the filter and its cutoff frequency, it is possible to reduce
the control action, above all during the transient phase.
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It is worth noting that if the filter is a Bessel one with cutoff angular frequency ωb larger or equal to the
angular frequency of r̃(t), then r(t) ∼= r̃(t− tr), tr = 3π/(4ωb) ([34,35]).

By setting:

e = r− y, x1 = e, x2 =
.
e, x = [xT

1 xT
2 ]

T
(20)

the plant (1) with the control law (18) is described by the following equations:

.
x =

[
0 I

−2a2H −2aH

]
x +

[
0
I

]
w = Ax + Bw, x =

[
x1

x2

]
=

[
e
.
e

]
e =

[
I 0

]
x = C1x,

.
e =

[
0 I

]
x = C2x,

(21)

where:
H = FG, w =

..
r− f − Fuc (22)

To design the control law (18) in order to force plant (1) to track a reference signal r(t) ∈ Rm

with bounded second derivative, with tracking error norm smaller that a prescribed value, despite
the presence of parametric and/or structural uncertainties and bounded disturbances, the following
preliminary notations, definitions and lemmas are introduced.

‖x‖P =
√

xT Px, ‖x‖ = ‖x‖I =
√

xTx, SP, ρ = {x : ‖x‖P ≤ ρ}, ρ ≥ 0
CP, ρ = {x : ‖x‖P = ρ}, ĈP, ρ ⊇ CP, ρ

(23)

where P ∈ Rn×n is a symmetric and positive definite (p.d.) matrix, xT is the transpose of x ∈ Rn,
ĈP, ρ is a compact set, λmax(W) (λmin(W)) is the maximum (minimum) eigenvalue of a square matrix
W ∈ Rn×n with real eigenvalues.

Definition 1. Given the system:

.
x = f (t, x, u, p), y = Cx
t ∈ T = [0 , t f ] ⊆ R, x ∈ Rn, u ∈ Rr

p ∈ ℘ ⊂ Rµ, y ∈ Rm, C ∈ Rm×n
(24)

a constant U ≥ 0 and a p. d. symmetric matrix P ∈ Rn×n. A positive first-order system:

.
ρ = ϕ(ρ, U), ρ0 = ‖x0‖P, Y = cρ (25)

where ρ(t) = ‖x(t)‖P, such that ‖y(t)‖ ≤ Y(t), ∀t ∈ T, ∀u : ‖u‖ ≤ U and ∀p ∈ ℘ is said to be a majorant
system of the system (24).

Remark 2. It is worth noting that a majorant system of a system belonging to the class of the uncertain
time-variant nonlinear systems (24) (which of course includes also the class of linear uncertain systems) is a
time-invariant first-order system. So it can be used to easily solve numerous analysis and synthesis problems,
such as the analysis of practical stability, the robust stabilization, the robust tracking (see also [21,34,35,38]).

Lemma 1. Let P ∈ Rn×n be a symmetric p.d. matrix, Q(t, x, p) ∈ Rn×n be a symmetric matrix, t ∈ [0, t f ] =

T ⊆ R, x ∈ Rn, p ∈ ℘, ℘ be a compact subset of Rµ, w(t, x, p) ∈ Rm be a vector continuous with respect
to t ∈ T , x ∈ Rn and p ∈ ℘, B ∈ Rn×r be a matrix of rank r and C ∈ Rm×n be a matrix of rank m. Then,
∀ρ ≥ 0 and ∀x ∈ CP,ρ, the following inequalities hold:

max
t∈T, x∈CP, ρ , p∈℘

xTQ(t, x, p)x ≤ max
t∈T, x∈CP, ρ , p∈℘

λmax(Q(t, x, p)P−1)ρ2 ≤ max
t∈T, x∈ĈP, ρ , p∈℘

λmax(Q(t, x, p)P−1)ρ2 (26)
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max
t∈T, x∈CP, ρ , p∈℘

xT PBw(t, x, p) ≤
√

λmax(BT PB) ρ max
t∈T, x∈CP, ρ , p∈℘

‖w(t, x, p)‖ ≤
√

λmax(BT PB) ρ max
t∈T, x∈ĈP, ρ , p∈℘

‖w(t, x, p)‖ (27)

‖Cx‖ ≤
√

λmax(CP−1CT) ρ (28)

Proof. See Lemmas 1 and 3 in [21]. �

Lemma 2. Consider a matrix function H(p) ∈ Rm×m, with p =
[
p1 p2 · · · p3 pµ

]T ∈ ℘ ⊂ Rµ, defined as a
ratio of a multi-affine matrix function to a multi-affine non null polynomial:

H(p) =

 ∑
i1,i2,··· ,iµ∈{0,1}

Hi1,i2,··· ,iµ pi1
1 pi2

2 · · · p
iµ
µ

/

 ∑
i1,i2,··· ,iµ∈{0,1}

hi1,i2,··· ,iµ pi1
1 pi2

2 · · · p
iµ
µ

 (29)

where Hi1,i2,··· ,iµ ∈ Rm×m and hi1,i2,··· ,iµ ∈ R. Suppose that ℘ is an hyper-rectangle given by

℘ =
[

p−1 , p+1
]
×
[

p−2 , p+2
]
× · · · ×

[
p−µ , p+µ

]
=
[

p−, p+
]
.

Then, min
p∈℘

λmin
(

H + HT) (max
p∈℘

λmax
(

H + HT)) is attained in one of the 2µ vertices Vp of ℘.

Proof. The proof follows from Theorem 1 in [44] by setting P = I and Q = H + HT . �

Lemma 3. Let:

H(p) =

(
∑

i1,i2,··· ,iµ∈{0,1,2}
Hi1,i2,··· ,iµ pi1

1 pi2
2 · · · p

iµ
µ

)
/

(
∑

i1,i2,··· ,iµ∈{0,1,2}
hi1,i2,··· ,iµ pi1

1 pi2
2 · · · p

iµ
µ

)
, Hi1,i2,··· ,iµ ∈ Rm×m, hi1,i2,··· ,iµ ∈ R (30)

be a matrix function, ratio of a quadratic matrix function to a quadratic non null polynomial
with respect to the parameters

[
p1 p2 · · · pµ

]T
= p ∈ ℘ = [p−, p+]. Then a

lower estimate of λmin
p∈℘

(
HT(p) + H(p)

)
(an upper estimate of λmax

p∈℘

(
H(p) + HT(p)

)
) is given by

min
p∈Vap

λmin
(

HT(pa) + H(pa)
)
(max

p∈Vap
λmax

(
HT(pa) + H(pa)

)
), where Vap is the set of 22µ vertices of and

Ha(pa) is obtained from matrix H(p) by replacing p2
i with the product pi pµ+i, i = 1, 2, . . . , µ.

Proof. The proof follows from Corollary 1 in [44] by setting P = I and Q = H + HT . �

Lemma 4. Let:

H(g(π)) =

(
∑

i1,i2,··· ,iµ∈{0,1}
Hi1,i2,··· ,iµ g(π)i1

1 g(π)i2
2 · · · g(π)

iµ
µ

)
/

(
∑

i1,i2,··· ,iµ∈{0,1}
hi1,i2,··· ,iµ g(π)i1

1 g(π)i2
2 · · · g(π)

iµ
µ

)
(31)

be a m × m nonsingular function matrix, where g = [g1 g1 . . . gµ]
T , π ∈ Π ⊂ Rν, Π is a

compact set and each function gi, i = 1, 2, .., µ is continuous with respect to π Then, a lower
estimate of λmin

π∈Π

(
H(g(π)) + HT(g(π))

)
(an upper estimate of λmax

π∈Π

(
H(g(π)) + HT(g(π))

)
) is given

by min
p∈℘

λmin
(

H(p) + HT(p)
)

(max
p∈℘

λmax
(

H(p) + HT(p)
)
), which is attained in one of the vertices of

℘ =
{

p ∈ Rµ :
[
ming1 · · ·mingµ

]T ≤ p ≤
[
maxg1 · · ·maxgµ

]T
}

.

Proof. The proof follows from Corollary 2 in [44] by setting P = I and Q = H + HT . �
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Lemma 5. Let P ∈ R2m×2m be a symmetric p.d. matrix, r ∈ Rm a reference signal with
bounded second derivative and uc a compensation signal such that ‖..

r− f − Fuc‖ ≤ ‖
..
r− f ‖. Then if

‖ f (t, ξ, d, p)‖ ≤ ϕγ0(‖ξ‖) where ξ =
[
yT .

yT
]T

and ϕγ0 is a function of class Kγ0 then:

‖w‖ = ‖..
r− f − Fuc‖ ≤ ψγc(‖x‖P) (32)

where x =
[
eT .

eT
]T

=
[
(r− y)T (

.
r− .

y)T
]T

and ψγc is a function of class Kγc , with γc = max‖..
r‖ +

ϕγ0

(
max‖

[
rT .

rT
]T
‖

P
/λmin(P)

)
.

Proof. Note that ‖ξ‖ ≤ ‖ξ‖P/λmin(P) = ‖
[
rT .

rT
]T
− x‖

P
/λmin(P) ≤(

‖x‖P + max‖
[
rT .

rT
]T
‖

P

)
/λmin(P) Hence:

‖..
r− f − Fuc‖ ≤ ‖

..
r− f ‖ ≤ ‖..

r‖+ ‖ f ‖ ≤ ‖..
r‖+ ϕγ0(‖ξ‖) ≤ ‖

..
r‖+ ϕγ0

((
‖x‖P + max‖

[
rT .

rT
]T
‖

P

)
/λmin(P)

)
≤ ψγc(‖x‖P). (33)

�

3. Main Results

This section presents the main theorems and results, providing a general approach to designing
smooth robust controllers for a system (1) to track a sufficiently smooth reference signal with error
norm smaller than a prescribed value.

Theorem 1. Consider the uncertain nonlinear dynamic system (1), satisfying conditions (1), (2) and controlled
with the control law (18), i.e., the following:

.
x =

[
0 I

−2a2H −2aH

]
x +

[
0
I

]
w = Ax + Bw

e =
[

I 0
]

x = C1x,
.
e =

[
0 I

]
x = C2x

(34)

where:
H = FG, w =

..
r− f − Fuc (35)

Then, if
..
r is bounded and the possible compensation signal uc is such that ‖..

r− f − Fuc‖ ≤ ‖
..
r− f ‖ a

majorant system of the closed loop system (34) is:

.
ρ = −aρ + ψγc(ρ) = χ(ρ)

‖e‖ = ρ
a , ‖ .

e‖ =
√

2ρ
(36)

where ρ = ‖x‖P, with:

P =

[
2a2 I aI
aI I

]
, a > 0 (37)

and ψγc is a function of class Kγc , with γc = max‖..
r‖+ ϕγ0

(
max‖

[
rT .

rT
]T
‖

P
/λmin(P)

)
.
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Proof. By choosing as “Lyapunov function” the quadratic form xT Px = ‖x‖2
P = ρ2, for x belonging to

the generic hyper-circumference CP,ρ, its derivative satisfies the following inequalities:

2ρ
.
ρ ≤ max

(
xTQx + 2xT PBw

)
≤ max

(
xTQx

)
+ max

(
2xT PBw

)
, Q = AT P + PA (38)

from which, for (26) and (27) of Lemma 1, it follows that:

.
ρ ≤ maxλ(QP−1)ρ/2 +

√
λmax(BT PB)max ‖w‖ (39)

Since:

P−1 =

[
I/a2 −I/a
−I/a 2I

]
(40)

if λmin
(

H + HT) ≥ 2, after certain mathematical steps, then:

maxλ(QP−1) = maxλ
[

AT + PAP−1
]
= maxλ

([
−2aI 2a2(2I − H − HT)

0 −2a(H + HT − I)

])
= −2a (41)

Moreover, it is easy to verify that:√
λmax(BT PB) = 1,

√
λmax(C1P−1CT

1 ) =
1
a

,
√

λmax(C2P−1CT
2 ) =

√
2 (42)

hence:
.
ρ ≤ −aρ + max‖w‖ (43)

The proof follows from (43), from (32) of Lemma 5 and by noting that, for x belonging to the
generic hyper-circumference CP,ρ from (28) of Lemma 1 and (42) it is:

‖e‖ ≤ ρ

a
, ‖ .

e‖ ≤
√

2ρ (44)

�
Theorem 1 allows one to establish the following significant theorems.

Theorem 2. Consider the system (34). If hypotheses of Theorem 1 are satisfied then, for ∀a ≥ ^
a , the following

inequalities hold:

ρ(t) ≤ ρ1, ∀ρ0 ≤ ρ1; lim
t→∞

ρ(t) ≤ ρ1, ∀ρ0 ∈ [ρ1, ρ2)

‖e(t)‖ ≤ ρ1
a , ∀ρ0 ≤ ρ1; lim

t→∞
‖e(t)‖ ≤ ρ1

a , ∀ρ0 ∈ [ρ1, ρ2)

‖ .
e(t)‖ ≤

√
2ρ1, ∀ρ0 ≤ ρ1; lim

t→∞
‖ .

e(t)‖ ≤
√

2ρ1, ∀ρ0 ∈ [ρ1, ρ2)

(45)

where
^
a is the value of a for which the line

.
ρ = aρ is tangent to the curve

.
ρ = ψγc(ρ) and ρ1, ρ2, ρ1 < ρ2 are

the smallest equilibrium points of the majorant system (36) (see Figure 2).
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^
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Proof. The proof easily follows by using the Lyapunov function V = ρ2 or by noting that in the interval
(ρ1, ρ2) ρ(t) is decreasing (see Figure 2, as well). �

It is worth noting that for sufficiently large a from Theorem 2 it is ρ1
∼= γc/a. Hence, for sufficiently

large a, if ‖x(0)‖P ≤ ρ1 then:

‖e(t)‖ ≤ ρ1

a
∼=

γc

a2 , ‖ .
e(t)‖ ≤

√
2ρ1
∼=
√

2γc

a
, ∀t ≥ 0 (46)

Remark 3. From (46) and Theorem 2 it follows that, for sufficiently large a and for sufficiently large t,
∀‖x0‖P < ρ2 the error norm decreases with respect to parameter a with an almost quadratic behavior, and the
derivative error norm decreases, always with respect to parameter a, with an almost linear behavior.

Remark 4. Note that the time constant τl of the linearized model of the majorant system
.
ρ = χ(ρ) (36) around

the equilibrium point ρ1 for sufficiently large a is τl
∼= 1/a.

By integrating the equation
.
ρ = χ(ρ) with initial condition ρ−2 < ρ2 it is possible to obtain the

“half time” t50% and a “settling time” t5% for any ρ0 < ρ−2 shown in Figure 3.

Figure 3. Illustration of the times t50% and t5%.
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Remark 5. Note that if F and f are independent of p and f (t, y,
.
y, d) = f (t, y,

.
y) + d by using the linearizing

control law:
u = F†(h2a2 Ie + h2aI

.
e +

..
r− f ), (47)

where F† = FT(FFT)
−1 is the pseudo-inverse of F, the closed-loop control system (1), (47) becomes:

.
x =

[
0 I

−h2a2 I −h2aI

]
x +

[
0
I

]
(−d), e =

[
I 0

]
x,

.
e =

[
0 I

]
x. (48)

It is easy to prove that the control system (48) has the following properties:

(a) if h = 1 :

- behavior of a Butterworth filter with angular frequency ωb =
√

2a;
- time constant τ = 1/a;
- overshoot equal to 4.32%;
- damping ratio ζ =

√
2/2;

- forced responses:

‖e(t)‖ <
∫ ∞

0

∣∣e−at sin(at)dt
∣∣ ·max‖..

r‖ ≤ 0.545
a2 max‖d‖

‖ .
e(t)‖ <

∫ ∞
0

∣∣∣ d
dt
(
e−at sin(at)

)
dt
∣∣∣ ·max‖d‖ ≤ 0.674

a max‖d‖. (49)

(b) if h > 1:

- cutoff angular frequency ωb ∈ [a,
√

2a];
- max time constant τmax ∈ [1/2a, 1/a];
- overshoot ≤ 4.32%;
- damping ratio ζ ≤

√
2/2;

- forced responses:

‖e(t)‖ ≤ [0.5, 0.545]
ha2 max‖d‖

‖ .
e(t)‖ ≤ [0.674, 1]

ha max‖d‖.
(50)

The proposed control law is also robust with respect to a possible bounded measurement noise n .
y

on
.
y as it is shown by the following theorem.

Theorem 3. Consider the uncertain nonlinear dynamic system (1), satisfying conditions (1), (2), and controlled
with the control law (18). If

.
y is affected by a bounded measurement noise n .

y, the rate of ‖e‖ due to the noise
n .

y, for sufficiently large a is inversely proportional to a.

Proof. If
.
y is affected by a bounded measurement noise n .

y the term ‖2aHn .
y‖ must be added to γc.

From (46), for sufficiently large a, ‖e‖ is inversely proportional to a2. Hence, the rate of ‖e‖ due to the
noise n .

y, for sufficiently large a is inversely proportional to a. �

Remark 6. To design the controller it is essential to determine a matrix G satisfying condition (2). Since,
in many practical cases, the matrix F is the ratio of a multi-affine or quadratic matrix function to a multi-affine
or quadratic non-null polynomial with respect to the uncertain parameters and respect to bounded functions,
the determination of G can be easily made by using Lemmas 2, 3 and 4, with:

(i) G = gI, g > 0 in the hypothesis that F is a p.d. matrix (in the case of (4) and (9));
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(ii) G = gJT , g > 0 where J is the Jacobian matrix of a suitable coordinate transformation (e.g., the case
of robots in their workspace or equipped with cameras used as sensors, in the cases of ships, drones, or
satellites);

(iii) G = F† = FT(FFT)
−1 if F is independent of p (e.g., in the case of kinematic inversion) or, by evaluating

G in correspondence of the nominal value p̂ of p, in the hypothesis that the variations of p are sufficiently
bounded;

(iv) other more suitable matrices G (see Application 3).

Remark 7. After verifying that f satisfies the bounding condition of class Kγ0 (2) and determining a matrix
G satisfying the positivity condition (1), since the tracking error decreases when a increases, the single parameter
a can be determined via simulation or experimentally for an assigned class of references r.

Remark 8. Inequalities used to prove Theorems 1, 2, 3 (especially to prove that when the design parameter a
increases the tracking error norm is inversely proportional to a2) can make very conservative the stated results.
A much less conservative estimate of the tracking error norm, i.e., providing smaller values of ρ1 and larger
values of ρ2, by taking into account that 2ρ

.
ρ = 2xT P

.
x can be obtained by using the following relation:

.
ρ = χ(ρ) = max

x∈CP, ρ , p∈℘,T∈[0, t f ]
xT P(Ax + Bw)/ρ (51)

that does not use any inequality. The offline use of (51) provides an error much near to the true one, as it turns
out to be from Applications 3 and 4, and Examples 2 and 3 in [34].

The determination of the majorant system by using (51) can be easily made by using the Matlab
command “fmincon” (which finds a constrained minimum of a function F(X) of several variables
and, hence, also a constrained maximum changing the sign to F(X)) and/or by using randomized
algorithms (e.g., see [22]).

Note that the current problem is not the computational burden of the controller design, but its
simplicity of realization and its effectiveness.

Remark 9. To reduce the gains of the controller and the control signal, above all during the transient phase, it is
possible to:

1. smooth the trajectories with appropriate filters and suitable initial conditions;
2. better identify the process parameters and the disturbances, and use a compensation signal uc to reduce the

norm of w;
3. use a connection trajectory if the initial error is excessive [35];
4. slow down r(t), i.e., replace the reference signal r(t) by r(st), with s < 1.

Moreover, consider also the following advantages (see (45) and (46), (49) and (50), Applications
1–4, Example 6 in the Appendix A and [16,19,34,35,38]):

1. the control signals are without the chattering phenomenon, since the proposed control law does
not present discontinuities and does not have high gains,

2. the proposed control laws can be also realized by using simple analogical circuits,
3. the stated theoretical results are useful to obtain other analytical and synthetic results, significant

both from a theoretical and practical point of view, and to analyze complex systems with
parametric and structural uncertainties.



Appl. Sci. 2018, 8, 2236 14 of 42

4. Cases Study

The results provided in the preceding section are illustrated through some interesting applications.

Application 1. Consider the electronic circuit in Figure 4. In the hypothesis that the considered transistor is a
BJT described by the equations:

i1 = Is
βF

(
ev1/vT − 1

)
+ Is

βR

(
e(v1−v2)/vT − 1

)
= g1(v1, v2)

i2 = Is

(
ev1/vT − 1

)
− Is

βR
1+βR

(
e(v1−v2)/vT − 1

)
= g2(v1, v2)

(52)

applying the Kirchhoff’s principles and the Thevenin’s theorem the model becomes:

Rcg2(v1, v2) + v2 + Re(g1(v1, v2) + g2(v1, v2))−Va = c1(v1, v2) = 0
Rb1Rb2

Rb1+Rb2
g1(v1, v2) + v1 + Re(g1(v1, v2) + g2(v1, v2))− VaRb1

Rb1+Rb2
= c2(v1, v2) = 0

(53)

A goal is to determine the working point v̂ =
[

v̂1 v̂2

]T
i.e., the solution of the nonlinear

equations system: (
c1(v1, v2)

c1(v1, v2)

)
= c(v1, v2) = 0 (54)
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Based on (17) and Theorems 1 and 2 the value of v̂ can be obtained by integrating the control
scheme in Figure 5.
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Under the following hypotheses:

Is = 1e−13 A, vT = 300
11.600 V, βF = 100, βR = 0.5

Rc = 3 kΩ, Re = 900 Ω, Rb1 = 1.70 kΩ, Rb2 = 8.30 kΩ, Va = 12
(55)

by numerically computing the Jacobian matrix as follows:

J =

(
c1(v1+0.01,v2)−c1(v1−0.01,v2)

0.02
c1(v1,v2+0.1)−c1(v1,v2−0.1)

0.2
c2(v1+0.01,v2)−c2(v1−0.01,v2)

0.02
c2(v1,v2+0.1)−c2(v1,v2−0.1)

0.2

)
(56)

with a = 30,
.
v0 = 0 and by using the Matlab solver ode45 with variable-step, after 1.2 s the results

reported in Table 1 are obtained.

Table 1. Values of v̂ and c(v̂) for several v0.

v0 c(v0) v̂ c(v̂)[
0
0
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−2.040000000000000
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0.60687199846390

5.931278656205906

] [
0.127767840751858
0.030172309095633

]
10−8

[
0.5
5

] [
−6.902629890911657
−1.517006057883000

] [
0.606871998469258
5.931278656228555

] [
−0.355271367880050
−0.088817841970013

]
10−14

[
1
10

] [
2.425412444463312
0.572760874825921

] [
0.606871998507988
5.931278656392560

] [
−0.925230914106123
−0.218493267922781

]
10−8
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Figure 6. The considered planar robot.

The goal is to realize the object in Figure 7 with the following time histories in the workspace:

y(t) =

 y1(t)
y2(t)
y2(t)

 =

 0.3 sin(2πt/10) + 0.15 sin(6πt/10) + 0.50
0.50 sin(2πt/10) + 0.30
− π

10 cos(πt/10)− π
2

 = c(β(t)), β(t) =

 β1(t)
β2(t)
β2(t)

, t ∈ [0, 10] (57)
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Figure 7. Object to be realized.

The time history of the trajectory in the joint space β(t) = c−1(y(t)) can be obtained by integrating
the control scheme in Figure 8, much easier than the ones proposed in ([10,11,13,33] and the related
references therein), where:

y(t) = c(β(t)) =

 L1 cos β1 + L2 cos(β1 + β2) + L3 cos(β1 + β2 + β3)

Hb + L1 sin β1 + L2 sin(β1 + β2) + L3 sin(β1 + β2 + β3)

β1 + β2 + β3

, J =
∂c
∂β

(58)

the value of β0 can be determined by using the method presented in Application 1 and the value of
.
β0

with the relation
.
β0 = J−1(β0)

.
y0.
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Figure 8. Control scheme for the kinematic inversion.

Note that slowing down r(t), i.e., replacing the reference signal r(t) by r(st), with s < 1, the
value of the error norm of function f (t, ε,

.
ε,

..
ε) (17), for ε ∼= 0,

.
ε ∼= 0, is reduced of s2 and, hence, for

sufficiently large a, also the error norm is reduced of s2.
In the hypothesis that Hb = 0.3 m, L1 = 0.6 m, L2 = 0.6 m, L3 = 0.3 m by choosing s = 0.1 and

by using the Matlab solver ode4 with fixed-step = 10−2, the results shown in Figures 9–11 are obtained.
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Figure 9. The trajectory β(t) and the related error e(t).
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Remark 10. To obtain the kinematic inversion, instead of starting from the “exact” initial conditions β0,
.
β0,

it is possible to extend to left y(t) (see Figure 13) and to start from initial conditions also very different from the
“exact” one.
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Figure 13. Extension to left of the reference.

The following applications show how it is easy to design, by using the proposed method,
simple, robust and efficient controllers, without chattering, with respect to other methods available in
the literature.

Application 3. In this application, the design of some robust controllers is considered for a three-link planar
robot (see Figure 14). The goal is to perform assembly and/or warehouse tasks with any human operator (see
Supplementary Material too).
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Figure 14. Considered planar robot.

Suppose, for simplicity, that the i-th link of the robot is a straight line of constant section and a
mass density mi with the tip two masses Mmi and Mpi of inertia moments Imi and Ipi. If:

Hb = 0.30 m, L1 = 0.75 m, L2 = 0.75 m, L3 = 0.30 m
m1 = 1.20 Kg/m, m2 = 1.00 Kg/ m, m3 = 0.80 Kg/m
Mm1 = 0, Mm2 = 0, Mm3 = 0
Mp1 = 0.30 Kg, Mp2 = 0.25 Kg, Mp3 = p1 ∈ [0, 1.00]Kg
Im1 = 0.12 Kgm2, Im2 = 0.10 Kgm2, Im3 = 0.08 Kgm2

Ip1 = 0, Ip2 = 0, Ip3 = p2 ∈ [0, 0.10]Kgm2

Ka1 = 1.00 Nms/rad, Ka2 = 1.00 Nms/rad, Ka3 = 1.00 Nms/rad

(59)

then the inertia matrix M can be computed by using the following relations (see [9]):

M(p, β) = M00 + M01 p1 + M02 p2 + (M10 + M11 p1 + M12 p2) cos β2 + (M20 + M21 p1 + M22 p2) cos β3+

+(M30 + M31 p1 + M32 p2) cos(β2 + β3)
(60)
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where the matrices Mij (and the corresponding model of the robot) can be found using the algorithm
from [9].

The Jacobian matrix is computed as:

J =
∂

∂β

 L1 cos β1 + L2 cos(β1 + β2) + L3 cos(β1 + β2 + β3)

Hb + L1 sin β1 + L2 sin(β1 + β2) + L3 sin(β1 + β2 + β3)

β1 + β2 + β3

 (61)

(A) Suppose that the goal is to perform the assembly or warehouse task shown in Figure 15, with
behaviors of r(t) = [r1(t) r2(t) r2(t)]

T and of
.
r(t), in the workspace, reported in Figure 16. In Figure 17

the corresponding behaviors in the joint space are reported. These ones are obtained from the original
behaviors r̃(t) = [r̃1(t) r̃2(t) r̃2(t)]

T by using a third-order Bessel filter with ωb = 10 rad/s and the
kinematic inversion.
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Figure 17. Time histories of rβ(t) and
.
rβ(t) in the joint space.

(a) Using Lemmas 2 and 4, a matrix Ga of the type Ga = gI, g > 0, which satisfies condition
λmin(M−1Ga + (M−1Ga)

T
) = 2g/λmax(M) ≥ 2, ∀p1 ∈ [0, 1], ∀p2 ∈ [0, 0.10] is:

Ga = λmax(M)I = 7.963

 1 0 0
0 1 0
0 0 1

 (62)

(b) By using Lemmas 2 and 4, a matrix Gb of the type Gb = g diag([3 2 1]), g > 0, which satisfies the
condition λmin(M−1Gb + (M−1Gb)

T
) = λmin(M−1Gb + Gb M−1) ≥ 2, ∀p1 ∈ [0, 1], ∀p2 ∈ [0, 0.10] is:

Gb = 4.515

 3 0 0
0 2 0
0 0 1

 (63)

(c) By using Lemmas 2 and 4, a matrix Gc of the type Gc = gJT(β) which satisfies the condition
λmin

(
JM−1Gc + (JM−1Gc)

T
)

= 2gλmin
(

JM−1 JT) ≥ 2, ∀p1 ∈ [0, 1], p2 ∈ [0, 0.10] and ∀β1 ∈
[−π, π], ∀β2 ∈ [−11π/12, −π/12], ∀β3 ∈ [−11π/12, −π/12] is:

Gc = 43.994JT(β) (64)

(d) By using Lemmas 2 and 4, a matrix Gd of the type Gd = gJ−1(β) which satisfies the
condition λmin

(
JM−1Gd + (JM−1Gd)

T
)
≥ 2, ∀p1 ∈ [0, 1], ∀p2 ∈ [0, 0.10] and ∀β1 ∈ [−π, π]

∀β2 ∈ [−11π/12, −π/12], ∀β3 ∈ [−11π/12, −π/12], is:

Gd = 15.516J−1(β) (65)

(e) Finally, by using Lemmas 2 and 4, it can be easily verified that the constant matrix:

Ge = 5.143

 −2.923 5.228 1.549
2.184 2.326 0.683
0.198 0.186 1.000

 (66)
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satisfies the condition λmin

(
JM−1Ge + (JM−1Ge)

T
)
≥ 2, ∀p1 ∈ [0, 1], ∀p2 ∈ [0, 0.10] and

∀β ∈ Irβ
, where:

Irβ
=
{

β :
∣∣βi − rβi

∣∣ ≤ 15π/180, i = 1, 2,
∣∣β3 − rβ3

∣∣ ≤ 25π/180
}

(67)

In Figure 18 the neighborhood Iry of ry in the workspace, corresponding to the neighborhoods Irβ

of rβ, is shown.
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Figure 18. Neighborhood Iry (blue) of ry. (red).

Suppose that Mp3 = 1.00 Kg, Ip3 = 0.10 Kgm2.
(A1) If the following a simple control law (three classic PD controllers in the joint space) is used:

u(t) = 7.963

 1 0 0
0 1 0
0 0 1

(2a2e(t) + 2a
.
e(t)

)
, a = 25, e(t) = rβ(t)− β(t) (68)

The graphical model of the majorant system ∀p1 ∈ [0, 1] and ∀p2 ∈ [0, 0.1], obtained with (51),
is reported in Figure 19.

From Figure 19, in accordance with Theorem 2, it is:

if ‖x0‖P ≤ ρ1 = 0.0904, then ‖e‖ ≤ ρ1/a = 0.0904/25 = 0.00362, ∀t ≥ 0;
if ‖x0‖P ∈ (ρ1, ρ2) = (0.0904, 78.26), then ‖e‖ → ρ1/a (e.g., if ‖x0‖P = 20, at less 5%, ‖e‖ ≤
0.00362, ∀t > 0.244s.

In Figures 20 and 21, the behaviors of u, e =
[
eβ1 eβ2 eβ3]

T , ‖e‖ are shown in the hypothesis of
x0 = 0 From Figure 21 it is ‖e‖ ≤ 0.00227, ∀t ≥ 0; this value is very close to the computed one 0.00362.
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ρ = f (ρ) and time histories of ρ(t) of the majorant system with the controller

in (68).
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Figure 21. Time histories of the errors with the controller (68).

(A2) With the simple control law:

u(t) = 4.515

 3 0 0
0 2 0
0 0 1

(2a2e(t) + 2a
.
e(t)

)
, a = 25, e(t) = rβ(t)− β(t) (69)

the errors e are reported in Figure 22.
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Figure 22. Time histories of the errors with the controller (69).

(A3) With the control law:

u(t) = 4.515

 3 0 0
0 2 0
0 0 1

(2a2e(t) + 2a
.
e(t)

)
− ug, e(t) = rβ(t)− β(t) (70)

where ug are the gravity torques, with a = 10, the errors e are shown in Figure 23; while with a = 5 the
errors, as shown in Figure 24, are approximately 4 times larger, in accordance with (46).
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Figure 23. Time histories of the errors using the controller (70) with a = 10.
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Figure 24. Time histories of the errors using the controller (70) with a = 5.

If the velocity
.
β(t) is affected by a measurement noise n .

β
uniformly distributed in [−0.05, 0.05],

always with the controller (70) with a = 5, the errors e are shown in Figure 25, in accordance with
Theorem 3.

Now consider the control in the workspace.
(A4) With the control law:

u(t) = 43.994JT(β)
(
2a2ey(t) + 2a

.
ey(t)

)
− ug

a = 5, ey(t) = r(t)− y(t)
(71)

where ug are the gravity torques, the errors are shown in Figure 26.
(A5) With the control law:

u(t) = 15.516J−1(β)
(
2a2ey(t) + 2a

.
ey(t)

)
− ug

a = 5, ey(t) = r(t)− y(t)
(72)

where ug are the gravity torques, the errors are shown in Figure 27.
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(A6) Finally, by using the simple control law:

u(t) = 5.143

 −2.923 5.228 1.549
2.184 2.326 0.683
0.198 0.186 1.000

(2a2ey(t) + 2a
.
ey(t)

)
ey(t) = r(t)− y(t), a = 15

(73)

the errors are shown in Figure 28.
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Remark 11. Note that the control law (73) is independent of β.

(B) Now consider the interaction of the considered robot with a human operator.
If Fe = [Fy1 Fy2 Fy3 ]

T is the generalized force exerted by the operator on the end-effector of the robot,
the model is:

M
..
β = u + JT Fe + γ (74)

Instead of opposing the action of Fe, this action can be supported by controlling the robot such to
behave as an impedance, comparable to a generalized mass-spring-damper system.

The above control can be achieved using the impedance control scheme in Figure 29.
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(B1) If the considered impedance is the one of a spring-damper system (see Figure 30a), then the
model is: .

x = −K−1
a Kex + K−1

a Fe

δe = x,
.
δe = −K−1

a Kex + K−1
a Fe

(75)
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Note that the output
.
δe can be used to realize the derivative action of the PD controller if

.
y

is measurable.
In the hypothesis that Ke = 5I, Ka = 5/2I, where I is the third-order identity matrix, the used

controller is (73), with r(t) = ry(t), assuming that the behaviors of the forces Fyi are as shown in
Figure 31 and the behaviors of ryi are as shown in Figure 32, then the behaviors of yi are reported in
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Figure 32. Behaviors of ryi and of yi assuming that the impedance is as shown in Figure 30a).

In Figure 33, selected phases of the robot interaction with a human operator are reported assuming
that the impedance is as shown in Figure 30a).
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(B2) If the considered impedance is the impedance of a damper (see Figure 30b), then the model is:

.
x = K−1

a Fe

δe = x,
.
δe = K−1

a Fe
(76)

In the hypothesis that Ka = 5/2I, where I is the third-order identity matrix, the used controller is
(73) with r(t) = ry(t), assuming that the behaviors of ryi are as shown in Figure 34 and the behaviors
of the forces Fyi are as shown in Figure 31, then the behaviors of yi are reported in Figure 34.
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Figure 34. Behaviors of ryi and yi assuming that the impedance is as shown in Figure 30b.

In Figure 35, selected phases of the interaction are reported in the hypothesis of an impedance as
in Figure 30b.
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Figure 35. Selected phases of the interaction in the hypothesis of an impedance as shown in Figure 30b).
(1–2 horizontal motion; 3–4 vertical motion; 5–6 angular motion).

Application 4. To be further convinced of the usefulness of the developed theory, many other examples can be
provided.

This example considers the plant:

..
y = − .

y3/20 + y(
.
y− .

y3
)/100 + sin(y/2)

.
y2/5 + atan(t/5) sin(t/10) + 1/(2 + (sin (t/5)2))u (77)

that does not belong to the class of system (9).
The desired reference signal is the one shown in Figure 36, which is obtained from an easily

generable piecewise-linear signal filtered by using a third-order Bessel filter with ωb = 3rad/s.
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Figure 36. Time histories of r,
.
r,

..
r.

The following PD controller is applied:

u(t) = G(2a2e + 2a
.
e), e = r− y (78)

with G = 3, satisfying condition (2).
In Figure 37, the graphical models of the majorant systems obtained with (78) are reported for

a = 5, 10, 20.
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Figure 37. Majorant systems for a = 5, 10, 20.

The time histories of u and e for a = 5, 10, 20 are shown in Figures 38–40, respectively.
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Figure 38. Time histories of u, e for a = 5.
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Figure 40. Time histories of u, e for a = 20.

Note that max|e|a=5/max|e|a=10 = 4.08, max|e|a=5/max|e|a=20 = 16.69, in accordance with the
fact that, for sufficiently large a, the maximum of |e| is inversely proportional to a2.

Remark 12. By taking into account numerous significant simulations made by the author, it follows that the
control system performance is still good if the derivative action is a real one with time constant τd ≤ 1

20a and/or
if the used actuator is a real one with electrical time constant τa ≤ 1

20a (see Example A3 in the Appendix A).
This can be explained by taking into account Remark 5, Theorem 3 and the robustness of the proposed control
law with respect to parametric uncertainties. The proof of the robustness of the control system with respect to
τd, τa will be the subject of a future paper.

5. Conclusions and Future Developments

In this paper, for a broad class of uncertain nonlinear MIMO systems, including many
manufacturing systems and land, sea, and air transportation systems, a novel and unified robust
control approach has been provided. It allows to design robust PD-type control laws without chattering
to track a reference signal with bounded second derivative with the tracking error norm smaller
than a prescribed value, despite the presence of bounded disturbances, parametric, and structural
uncertainties, and bounded measurement noises. It has also been proved that the proposed control
laws are robust with respect to bounded measurement noises.

With reference to the mechanical and transportation systems, this theory has been successfully
applied when the controller uses information signals related to the joint space or signals related
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to the workspace. Moreover, the proposed results have also been fruitfully used for the control of
human-machine interaction.

The obtained theoretical results have been illustrated through four relevant theoretical and
engineering applications.

The main advantages of the results of this study can be summarized as follows:

• The considered class of nonlinear uncertain MIMO systems is broad and includes an important
class of uncertain linear systems.

• A comprehensive approach based on the concept of majorant systems is provided to design
smooth robust controllers. They have been used to track a generic reference signal with bounded
second derivative with a tracking error norm smaller than a prescribed value.

• The obtained control laws are easy to design and implement. These laws have no high gains and
are free from discontinuities.

• Suitable filtering laws are proposed for tracked trajectories to facilitate the implementation of the
control laws and reduce the control magnitude, particularly during the transient phase.

• The maximum tracking error can be fixed a priori despite bounded parametric uncertainties,
disturbances, and velocity measurement noise.

• A simple relation exists between a single design parameter of the controller and the maximum
tracking error, which is useful for obtaining the desired tracking precision.

• The proposed control laws are robust with respect to bounded measurement noises.

The established theoretical results can be used also to obtain further analysis and synthesis results
and study complex systems with parametric and structural uncertainties. Moreover, other engineering
and/or theoretical complex nonlinear uncertain systems can be easily controlled as the treated case
studies, e.g., a drone and missile in the ongoing activity of the author.

Future developments of this methodology and ongoing work of the author are: the theoretical
extension of the proposed results when real derivative actions, real actuators and real amplifiers based
on the PWM technique are considered.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/8/11/2236/
s1, An illustrative video of the robotic assembly system reported in Application 3 is provided. This video shows:
(1) an operation of robotic assembly; (2) a human-robot interaction of spring-damper type; (3) a human-robot
interaction of damper type.
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Appendix A

In the following six easy examples are provided. The first five ones clearly show how numerous
control techniques available in the literature for significant classes of linear and nonlinear systems can
produce unstable control system or can significantly reduce the performance of the control system,
under the following realistic hypotheses:

(1) parametric uncertainties;
(2) real actuators;
(3) measurement noise;
(4) finite online computation time of the control signal.

The sixth example shows that the above mentioned disadvantages can be eliminated or reduced
with the results proposed in the paper.
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Example A1. Consider the position control of an AGV. A model of the simple AGV in Figure A1 is:

M
..
y + K

.
y + Mg(y) = u + d (A1)

where y is the position, u is the control force, d is the disturbance force, M is the mass of the AGV and
of its load, K is the friction coefficient, and Mg(y) is the action of the gravity force dependent on the
slope of the road.

Appl. Sci. 2018, 8, x 33 of 42 

where y  is the position, u  is the control force, d  is the disturbance force, M  is the mass of the 
AGV and of its load, K  is the friction coefficient, and ( )Mg y  is the action of the gravity force 
dependent on the slope of the road. 

 
Figure A1. AGV. 

Suppose the slope of the road constant and unknown. Including the gravity action in d, in the 
hypothesis that 1 ([ quintal])M q   and  0.50, 3.50K   the model is represented as: 

 ,  0.50, 3.50y Ky u d K      (A2) 

By using the control law: 

 ˆ 1 1 ,  p i du Ky r K e K ed K e e r y            (A3) 

based on the inverse dynamic control technique, the closed-loop control system turns out to be: 

ˆ ˆ( ) ( )d p ie K K K e K e K e K K r d             (A4) 

If ˆ 2   p d iK K K K  the dynamical model of the tracking error (A4) is: 

2 2 ( 2)e Ke e K r d           (A5) 

For ˆ 2K K   and (0) (0) (0) 0e e e     in the presence of any disturbance with bounded 
derivative, applying the method proposed in [34,35], the tracking error is ( ) 1.357 pe t  , where 

max ( )p d t   . 

For 1K  , instead, the tracking error is not acceptable since system (A4) is unstable. 
Therefore, the inverse dynamic control technique, under the hypothesis of parametric 

uncertainties, is not reliable! 

Example A2. Suppose that  0.50,1.50M  , 1K   and that the slope of the road is such that 
( ) 5sin( )g y y . In this case the model is: 

 5sin ,  0.50, 1.50M y y M y u d M       (A6) 

By using the control law: 

ˆ ˆ5sin ,  ,  1p d p du M y K e K e e r y M K K         (A7) 

based on the feedback linearization technique, the dynamical model of the tracking error is: 

2 ( 1)5sin( )Me e e M r e Mr r d            (A8) 

For ˆ 1M M   and (0) (0) 0e e  , in the presence of any bounded disturbance ( )d t , applying 
the method proposed in [34,35], the tracking error of any reference with bounded second derivative 
is ( ) 1e t   , where max r r d     . 

Figure A1. AGV.

Suppose the slope of the road constant and unknown. Including the gravity action in d, in the
hypothesis that M = 1 ([q = quintal]) and K ∈ [0.50, 3.50] the model is represented as:

..
y + K

.
y = u + d, K ∈ [0.50, 3.50] (A2)

By using the control law:

u = K̂
.
y + 1 · ..

r + 1 ·
(

Kpe + Ki

∫
edτ + Kde

)
, e = r− y (A3)

based on the inverse dynamic control technique, the closed-loop control system turns out to be:

...
e + (Kd + K− K̂)

..
e + Kp

.
e + Kie = (K− K̂)

..
r−

.
d (A4)

If K̂ = Kp = Kd = Ki = 2 the dynamical model of the tracking error (A4) is:

...
e + K

..
e + 2

.
e + 2 = (K− 2)

..
r−

.
d (A5)

For K = K̂ = 2 and e(0) =
.
e(0) =

..
e(0) = 0 in the presence of any disturbance with bounded

derivative, applying the method proposed in [34,35], the tracking error is |e(t)| ≤ 1.357δp, where

δp = max
∣∣∣ .
d(t)

∣∣∣.
For K < 1, instead, the tracking error is not acceptable since system (A4) is unstable.
Therefore, the inverse dynamic control technique, under the hypothesis of parametric

uncertainties, is not reliable!

Example A2. Suppose that M ∈ [0.50, 1.50], K = 1 and that the slope of the road is such that g(y) = 5 sin(y).
In this case the model is:

M
..
y +

.
y + M5 sin y = u + d, M ∈ [0.50, 1.50] (A6)

By using the control law:

u = M̂5 sin y + Kpe + Kd
.
e, e = r− y, M̂ = Kp = Kd = 1 (A7)
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based on the feedback linearization technique, the dynamical model of the tracking error is:

M
..
e + 2

.
e + e = (M− 1)5 sin(r− e) + M

..
r +

.
r− d (A8)

For M = M̂ = 1 and e(0) =
.
e(0) = 0, in the presence of any bounded disturbance d(t), applying

the method proposed in [34,35], the tracking error of any reference with bounded second derivative is
|e(t)| ≤ 1 · δ, where δ = max

∣∣..r + .
r− d

∣∣.
Instead, for M < 4/5 the tracking error is not always acceptable, since system (A1) can be unstable

for r = 0.
Hence, the control method based on the feedback linearization technique, under the hypothesis

of parametric uncertainties, is not always reliable, especially for robots!

Example A3. Consider the system (A2) for K = 1:

..
y +

.
y = u + d (A9)

activated by a DC motor supplied with an amplifier of gain g:

.
u = −R

L
u− H2

L
.
y +

Hg
L

υ (A10)

in which υ is the amplifier supply voltage. If L = 0.1, H = 1, g = R it is:

.
u = −10Ru− 10

.
y + 10Rυ (A11)

If R � L, i.e., under the hypothesis of an almost ideal actuator, then u ∼= υ and, hence, for
R/L→ ∞ , it is:

..
y = υ− .

y + d (A12)

By using the control law:

υ = (Kpe + Kd
.
e) +

..
r +

.
y, e = r− y (A13)

the dynamical model of the tracking error, in the hypothesis that Kp = 2a2, Kd = 2a is:

..
e + 2a

.
e + 2a2e = −d (A14)

For e(0) =
.
e(0) = 0 and ∀d(t) : |d(t)| ≤ δ, applying the first of (49), it is |e(t)| ≤ 0.545δ/a2.

From (A9), (A11) and (A13) the exact model turns out to be:

..
e = − .

e− u +
..
r +

.
r− d

.
u = 10R2a2e + 10(R2a− R + 1)

.
e− 10Ru + 10(R

..
r + (R− 1)

.
r)

(A15)

from which, by setting x = [ e
.
e u ]

T
, it is:

.
x =

 0 1 0
0 −1 −1

10R2a2 10(R2a− R + 1) −10R

x +

 0
..
r +

.
r− d

10(R
..
r + (R− 1)

.
r)

 = Ax + σ (A16)

It is easy to verify that for R < 0.102a− 0.30, a ∈ [5, 50], the control system is unstable, while for
R > 0.102a− 0.15, a ∈ [5, 50], the control system is stable (see Figure A2). For R = 2a, a ∈ [5, 50], it is:
λ(A) ∼= {−a± ja, −18a}, i.e., if the time constant of the actuator τa is equal to 1

20a in the hypothesis of
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real actuator (A11), the dynamic matrix A has a couple of dominant eigenvalues equal to the poles of
the closed-loop system (A14).
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Hence, it can be said that the control techniques of the mechanical systems, especially for robots,
which make the hypothesis of ideal actuators (torque and/or force actuators), are not reliable!

Example A4. Consider the system (A2):

..
y + K

.
y = u + d, K ∈

[
0.50 3.50

]
(A17)

that can be rewritten as follows:
.
x = Ax + Bu + Ed, y = Cx

x =

[
y
.
y

]
, A =

[
0 1
0 −K

]
, B = E =

[
0
1

]
, C =

[
1 0

] (A18)

To control the system (A17) with the MPC technique (e.g., [37,43]), consider the following system
as the nominal model in order to predict its evolution:

.
x̃ = Ãx + B̃u, ỹ = C̃x̃

Ã =

[
0 1
0 −2

]
, B̃ =

[
0
1

]
, C̃ =

[
1 0

] (A19)

Fixed the sampling time T, let:

xk+1 = Adxk + Bduk + Eddk, yk = Cdxk (A20)

x̃k+1 = Ãdxk + B̃duk, ỹk = C̃d x̃k (A21)

be the discrete time models of the systems (A18) and (A19), respectively.
Said rk the reference signal to track, it is:

ek+1 = rk+1 − ỹk+1 = rk+1 − (C̃d Ãdxk + C̃d B̃duk) (A22)

As control uk consider the one minimizing the performance index:

min
uk∈[u− , u+ ]

(
e2

k+1

)
(A23)
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Suppose that:

T = 0.10, K = 1, x0 = [0.50 0]T , u− = −5, u+ = 5, d = 1, r = sin t (A24)

In Figure A3 the time histories of u, r, and y are reported.
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If the velocity
.
y is affected by a measurement noise n .

y uniformly distributed in the interval
[−0.10, 0.10], some time histories of u, r and y are reported in Figures A4 and A5.
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From Figures A4 and A5 it clearly emerges that in general an MPC controller is very sensitive to
measurement errors.

Moreover, by noting that:

(1) for more complex nonlinear systems with parametric uncertainties the MPC controller requires a
high online computational burden,

(2) in general, the properties of asymptotic stability depend in a complex way on the model chosen
to predict the evolution and on other parameters of the controller,

it can be deduced that, in many cases, controllers based on other control techniques should be
preferred with respect MPC.

Example A5. Consider the system:

M
..
y + K

.
y + M5 sin y = u + d, M ∈ [0.50, 1.50], K ∈ [1, 2] (A25)

In the hypothesis that:
d = 0.5 sin(2t), r = sin(t) (A26)

consider the control law:
u = 10sign(e +

.
e) (A27)

In Figures A6 and A7, the time histories of u, e,
.
e are reported in the hypothesis that M = 1, K = 1

and that downstream of the controller there is a zero holder hold (ZOH) with sampling time T = 0.01,
0.10 respectively.
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From Figures A6 and A7 it can be deduced that the chattering control law with finite switching
frequency does not provide good performance, especially of the error derivative

.
e.

Under the hypothesis of real actuators and real derivative actions, the control system can be
even unstable.

Example A6. Still, consider the system (A25) with d and r in (A26).

By using the simple control law:

u = 3(102e + 10
.
e) (A28)

designed with the proposed methodology, in the hypothesis that M = 1, K = 1 and that downstream of
the controller there is a pulse-width modulation (PWM) modulator with sampling time T = 0.01, 0.10
the time histories of u, e,

.
e are reported in Figures A8 and A9, respectively.
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Figure A9. Time histories of u, e,
.
e with the PD controller (A3) and a PWM modulator with sampling

time T = 0.10.

In Figure A10, the control signals in Figures A7 and A9 are reported with detail.
From Figures A8 and A9 and from the corresponding Figures A6 and A7 it emerges how

the performance of the control system with a controller designed by using the stated theory and
implemented by using a PWM modulator are better, both regarding to the amplitude of the control
signal (see Figure A1, as well) and the precision, than the performance obtained with a controller
designed with the control techniques using high frequency and high-amplitude control signals
(e.g., [4,10,14,31,40,41] and related references therein) and implemented with commutation devices
with evaluation of the sign at finite frequency.

Moreover, it is worth noting that the PWM modulator technology is at low cost and very used in
the engineering practice.

Finally, take also into account:

(1) the results already published in [34,35,38],
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(2) that the articulated mechanical systems are very complex (see [6]) and that, hence, techniques
using their online models are difficult to be implemented without delays; therefore, the delays
due to the online computation times can make unstable the control system.

Thus, it clearly emerges that the results proposed in this paper (see also Applications 1–4), which
are a broad generalization of the technique presented in [21], are very useful from a theoretical and
applicative point of view.
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