Heterocyclic compounds hold a special place among pharmaceutically important natural and synthetic materials. The remarkable ability of heterocyclic nuclei to serve both as biomimetics and reactive pharmacophores has largely contributed to their unique value as traditional key elements of numerous drugs. In both lead identification and optimization processes there is an acute need for new organic small molecules. Traditional methods of organic synthesis are orders of magnitude too slow to satisfy the demand for these compounds; so, the fields of combinatorial and automated medicinal chemistry have been developed to meet the increasing requirement of new compounds for drug discovery, within these fields, speed is of the essence. The efficiency of microwave flash-heating chemistry in dramatically reducing reaction times (reduced from days and hours to minutes and seconds) has recently been proven in several different fields of organic chemistry. We believe that the time saved by using focused microwaves is potentially important in traditional organic synthesis but could be of even greater importance in high-speed combinatorial and medicinal chemistry. In this review, it is impossible to cover all significant developments in the area of microwave-assisted organic synthesis (MAOS). Rather, outlines the basic principles behind the technology and summarizes the areas in which microwave technology has made an impact, to date. Specific attention is given to application of microwave technology in Combinatorial Organic Synthesis of several representative biologically interesting nuclei obtained both in liquid systems and in the solid state.

The application of microwaves in combinatorial and high-throughput synthesis as new synthetic procedure in drug discovery / Santagada, Vincenzo; Frecentese, Francesco; Perissutti, Elisa; L., Favretto; Caliendo, Giuseppe. - In: QSAR AND COMBINATORIAL SCIENCE. - ISSN 1611-020X. - STAMPA. - 23:10(2004), pp. 919-944. [10.1002/qsar.200420039]

The application of microwaves in combinatorial and high-throughput synthesis as new synthetic procedure in drug discovery.

SANTAGADA, VINCENZO;FRECENTESE, FRANCESCO;PERISSUTTI, ELISA;CALIENDO, GIUSEPPE
2004

Abstract

Heterocyclic compounds hold a special place among pharmaceutically important natural and synthetic materials. The remarkable ability of heterocyclic nuclei to serve both as biomimetics and reactive pharmacophores has largely contributed to their unique value as traditional key elements of numerous drugs. In both lead identification and optimization processes there is an acute need for new organic small molecules. Traditional methods of organic synthesis are orders of magnitude too slow to satisfy the demand for these compounds; so, the fields of combinatorial and automated medicinal chemistry have been developed to meet the increasing requirement of new compounds for drug discovery, within these fields, speed is of the essence. The efficiency of microwave flash-heating chemistry in dramatically reducing reaction times (reduced from days and hours to minutes and seconds) has recently been proven in several different fields of organic chemistry. We believe that the time saved by using focused microwaves is potentially important in traditional organic synthesis but could be of even greater importance in high-speed combinatorial and medicinal chemistry. In this review, it is impossible to cover all significant developments in the area of microwave-assisted organic synthesis (MAOS). Rather, outlines the basic principles behind the technology and summarizes the areas in which microwave technology has made an impact, to date. Specific attention is given to application of microwave technology in Combinatorial Organic Synthesis of several representative biologically interesting nuclei obtained both in liquid systems and in the solid state.
2004
The application of microwaves in combinatorial and high-throughput synthesis as new synthetic procedure in drug discovery / Santagada, Vincenzo; Frecentese, Francesco; Perissutti, Elisa; L., Favretto; Caliendo, Giuseppe. - In: QSAR AND COMBINATORIAL SCIENCE. - ISSN 1611-020X. - STAMPA. - 23:10(2004), pp. 919-944. [10.1002/qsar.200420039]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/509119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 41
social impact