The Alzheimer's beta-amyloid peptides derive from the proteolytic processing of the beta-amyloid precursor protein, APP, by beta- and gamma-secretases. The regulation of this processing is not fully understood. Experimental evidence suggests that the activation of pathways involving protein tyrosine kinases, such as PDGFR and Src, could induce the cleavage of APP and in turn the generation of amyloid peptides. In this paper we addressed the effect of receptor and nonreceptor protein tyrosine kinases on the cleavage of APP and the mechanisms of their action. To this aim, we developed an in vitro system based on the APP-Gal4 fusion protein stably transfected in SHSY5Y neuroblastoma cell line. The cleavage of this molecule, induced by various stimuli, results in the activation of the transcription of the luciferase gene under the control of Gal4 cis-elements. By using this experimental system we demonstrated that, similarly to Src, three tyrosine kinases, TrkA, Ret and EGFR, induced the cleavage of APP-Gal4. We excluded that this effect was mediated by the activation of Ras-MAPK, PI3K-Akt and PLC-gamma pathways. Furthermore, the direct phosphorylation of the APP cytosolic domain does not affect Abeta peptide generation. On the contrary, experiments in cells lacking the LDL-receptor related protein LRP support the hypothesis that the interaction of APP with LRP is required for the induction of APP cleavage by tyrosine kinases.

Receptor- and non-receptor tyrosine kinases induce processing of the amyloid precursor protein: role of the low-density lipoprotein receptor-related protein / Minopoli, Giuseppina; Passaro, Fabiana; L., Aloia; Carlomagno, Francesca; Melillo, ROSA MARINA; Santoro, Massimo; F., Forzati; Zambrano, Nicola; Russo, Tommaso. - In: NEURODEGENERATIVE DISEASES. - ISSN 1660-2854. - STAMPA. - 4:(2007), pp. 94-100. [10.1159/000101833]

Receptor- and non-receptor tyrosine kinases induce processing of the amyloid precursor protein: role of the low-density lipoprotein receptor-related protein.

MINOPOLI, GIUSEPPINA;PASSARO, FABIANA;CARLOMAGNO, Francesca;MELILLO, ROSA MARINA;SANTORO, MASSIMO;ZAMBRANO, NICOLA;RUSSO, TOMMASO
2007

Abstract

The Alzheimer's beta-amyloid peptides derive from the proteolytic processing of the beta-amyloid precursor protein, APP, by beta- and gamma-secretases. The regulation of this processing is not fully understood. Experimental evidence suggests that the activation of pathways involving protein tyrosine kinases, such as PDGFR and Src, could induce the cleavage of APP and in turn the generation of amyloid peptides. In this paper we addressed the effect of receptor and nonreceptor protein tyrosine kinases on the cleavage of APP and the mechanisms of their action. To this aim, we developed an in vitro system based on the APP-Gal4 fusion protein stably transfected in SHSY5Y neuroblastoma cell line. The cleavage of this molecule, induced by various stimuli, results in the activation of the transcription of the luciferase gene under the control of Gal4 cis-elements. By using this experimental system we demonstrated that, similarly to Src, three tyrosine kinases, TrkA, Ret and EGFR, induced the cleavage of APP-Gal4. We excluded that this effect was mediated by the activation of Ras-MAPK, PI3K-Akt and PLC-gamma pathways. Furthermore, the direct phosphorylation of the APP cytosolic domain does not affect Abeta peptide generation. On the contrary, experiments in cells lacking the LDL-receptor related protein LRP support the hypothesis that the interaction of APP with LRP is required for the induction of APP cleavage by tyrosine kinases.
2007
Receptor- and non-receptor tyrosine kinases induce processing of the amyloid precursor protein: role of the low-density lipoprotein receptor-related protein / Minopoli, Giuseppina; Passaro, Fabiana; L., Aloia; Carlomagno, Francesca; Melillo, ROSA MARINA; Santoro, Massimo; F., Forzati; Zambrano, Nicola; Russo, Tommaso. - In: NEURODEGENERATIVE DISEASES. - ISSN 1660-2854. - STAMPA. - 4:(2007), pp. 94-100. [10.1159/000101833]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/485597
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact