In this paper, a 3D robotic ball catching algorithm which employs only an eye-in-hand monocular visual-system is presented. A partitioned visual servoing control is used in order to generate the robot motion, keeping always the ball in the field of view of the camera. When the ball is detected, the camera mounted on the robot end-effector is commanded to follow a suitable baseline in order to acquire measurements and provide a first possible interception point through a linear estimation process. Thereafter, further visual measures are acquired in order to continuously refine the previous prediction through a non-linear estimation process. Experimental results show the effectiveness of the proposed solution.

3D monocular robotic ball catching with an iterative trajectory estimation refinement

LIPPIELLO, VINCENZO;RUGGIERO, FABIO
2012

Abstract

In this paper, a 3D robotic ball catching algorithm which employs only an eye-in-hand monocular visual-system is presented. A partitioned visual servoing control is used in order to generate the robot motion, keeping always the ball in the field of view of the camera. When the ball is detected, the camera mounted on the robot end-effector is commanded to follow a suitable baseline in order to acquire measurements and provide a first possible interception point through a linear estimation process. Thereafter, further visual measures are acquired in order to continuously refine the previous prediction through a non-linear estimation process. Experimental results show the effectiveness of the proposed solution.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/485443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 14
social impact