Tyrosinase, a pivotal enzyme in melanin biosynthesis, orchestrates the pigmentation process in humans, affecting skin, hair, and eye color. This chapter examines the three-dimensional structure and functional aspects of tyrosinases from various sources, highlighting their di-metal ion coordination crucial for catalytic activity. I explore the biochemical pathwayscheme catalyzed by tyrosinase, specifically the oxidation of L-tyrosine to L-dopaquinone, a precursor in melanin synthesis. Detailed structural analyses, including 3D structures obtained from X-ray crystallography and computational modeling, reveal key insights into the enzyme’s active site, variations among tyrosinases, and substrate binding mechanisms. Furthermore, the chapter investigates the role of human tyrosinase variants, their inhibitors, essential for developing therapeutic and cosmetic applications targeting hyperpigmentation disorders. Structural characterizations of tyrosinase-inhibitor complexes provide a foundation for designing effective inhibitors, with compounds like kojic acid, L-mimosine, and (S)-3-amino-tyrosine demonstrating significant inhibitory potential. This comprehensive examination of the structure, function, and inhibition mechanisms of tyrosinase offers avenues for innovative treatments in biotechnology, health, and beyond.

Structural characterization of tyrosinases and an update on human enzymes / DI COSTANZO, Luigi. - 56:(2024), pp. 55-83. [10.1016/bs.enz.2024.06.004]

Structural characterization of tyrosinases and an update on human enzymes

LUIGI DI COSTANZO
Primo
Conceptualization
2024

Abstract

Tyrosinase, a pivotal enzyme in melanin biosynthesis, orchestrates the pigmentation process in humans, affecting skin, hair, and eye color. This chapter examines the three-dimensional structure and functional aspects of tyrosinases from various sources, highlighting their di-metal ion coordination crucial for catalytic activity. I explore the biochemical pathwayscheme catalyzed by tyrosinase, specifically the oxidation of L-tyrosine to L-dopaquinone, a precursor in melanin synthesis. Detailed structural analyses, including 3D structures obtained from X-ray crystallography and computational modeling, reveal key insights into the enzyme’s active site, variations among tyrosinases, and substrate binding mechanisms. Furthermore, the chapter investigates the role of human tyrosinase variants, their inhibitors, essential for developing therapeutic and cosmetic applications targeting hyperpigmentation disorders. Structural characterizations of tyrosinase-inhibitor complexes provide a foundation for designing effective inhibitors, with compounds like kojic acid, L-mimosine, and (S)-3-amino-tyrosine demonstrating significant inhibitory potential. This comprehensive examination of the structure, function, and inhibition mechanisms of tyrosinase offers avenues for innovative treatments in biotechnology, health, and beyond.
2024
Structural characterization of tyrosinases and an update on human enzymes / DI COSTANZO, Luigi. - 56:(2024), pp. 55-83. [10.1016/bs.enz.2024.06.004]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1874604724000210-main.pdf

accesso aperto

Licenza: Copyright dell'editore
Dimensione 6.54 MB
Formato Adobe PDF
6.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/993801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact