Training Named Entity Recognition (NER) models typically necessitates the use of extensively annotated datasets. This requirement presents a significant challenge due to the labor-intensive and costly nature of manual annotation, especially in specialized domains such as medicine and finance. To address data scarcity, two strategies have emerged as effective: (1) Active Learning (AL), which autonomously identifies samples that would most enhance model performance if annotated, and (2) data augmentation, which automatically generates new samples. However, while AL reduces human effort, it does not eliminate it entirely, and data augmentation often leads to incomplete and noisy annotations, presenting new hurdles in NER model training. In this study, we integrate AL principles into a data augmentation framework, named Active Learning-based Data Augmentation for NER (ALDANER), to prioritize the selection of informative samples from an augmented pool and mitigate the impact of noisy annotations. Our experiments across various benchmark datasets and few-shot scenarios demonstrate that our approach surpasses several data augmentation baselines, offering insights into promising avenues for future research.
ALDANER: Active Learning based Data Augmentation for Named Entity Recognition / Moscato, Vincenzo; Postiglione, Marco; Sperlì, Giancarlo; Vignali, Andrea. - In: KNOWLEDGE-BASED SYSTEMS. - ISSN 0950-7051. - 305:(2024). [10.1016/j.knosys.2024.112682]
ALDANER: Active Learning based Data Augmentation for Named Entity Recognition
Vincenzo Moscato;Marco Postiglione;Giancarlo Sperlì;Andrea Vignali
2024
Abstract
Training Named Entity Recognition (NER) models typically necessitates the use of extensively annotated datasets. This requirement presents a significant challenge due to the labor-intensive and costly nature of manual annotation, especially in specialized domains such as medicine and finance. To address data scarcity, two strategies have emerged as effective: (1) Active Learning (AL), which autonomously identifies samples that would most enhance model performance if annotated, and (2) data augmentation, which automatically generates new samples. However, while AL reduces human effort, it does not eliminate it entirely, and data augmentation often leads to incomplete and noisy annotations, presenting new hurdles in NER model training. In this study, we integrate AL principles into a data augmentation framework, named Active Learning-based Data Augmentation for NER (ALDANER), to prioritize the selection of informative samples from an augmented pool and mitigate the impact of noisy annotations. Our experiments across various benchmark datasets and few-shot scenarios demonstrate that our approach surpasses several data augmentation baselines, offering insights into promising avenues for future research.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.