The process and temperature control of metal casting applications is of utmost importance both to guarantee the good quality of the final product and also to pursue an energy saving policy. For this purpose, in this paper two different modelling approaches have been proposed to predict the liquid steel temperature inside a ladle for metal casting, shortly before the casting process. The first is a physics-based grey-box model relying on equations for the characterization of the heat transfer mechanisms inside the ladle structure, whereas the second approach relies on artificial neural networks (ANNs). Both methods have been calibrated with experimental data of a case study plant, and subsequently assessed and compared in terms of prediction accuracy. Results show that the physics-based approach is able to predict the casting temperature with a higher mean absolute error (MAE) of 14 °C, whereas the ANNs predictions result to be better, with MAEs around 6 °C. On the other hand, it has been demonstrated that the ANNs approach may lack of reliability, especially if input data strongly differ from the calibration dataset, whereas the physics-based approach results to be more consistent and trustworthy. Finally, an energy analysis is conducted to demonstrate the feasibility of the model in evaluating the potential energy saving compared with situations in which decisions are taken by operators without the aid of a model predictive control.

Process control and energy saving in the ladle stage of a metal casting process through physics-based and ANN-based modelling approaches / Mastrullo, Rita; Mauro, Alfonso William; Pelella, Francesco; Viscito, Luca. - In: APPLIED THERMAL ENGINEERING. - ISSN 1359-4311. - 248:(2024). [10.1016/j.applthermaleng.2024.123135]

Process control and energy saving in the ladle stage of a metal casting process through physics-based and ANN-based modelling approaches

Mastrullo, Rita;Mauro, Alfonso William
;
Pelella, Francesco;Viscito, Luca
2024

Abstract

The process and temperature control of metal casting applications is of utmost importance both to guarantee the good quality of the final product and also to pursue an energy saving policy. For this purpose, in this paper two different modelling approaches have been proposed to predict the liquid steel temperature inside a ladle for metal casting, shortly before the casting process. The first is a physics-based grey-box model relying on equations for the characterization of the heat transfer mechanisms inside the ladle structure, whereas the second approach relies on artificial neural networks (ANNs). Both methods have been calibrated with experimental data of a case study plant, and subsequently assessed and compared in terms of prediction accuracy. Results show that the physics-based approach is able to predict the casting temperature with a higher mean absolute error (MAE) of 14 °C, whereas the ANNs predictions result to be better, with MAEs around 6 °C. On the other hand, it has been demonstrated that the ANNs approach may lack of reliability, especially if input data strongly differ from the calibration dataset, whereas the physics-based approach results to be more consistent and trustworthy. Finally, an energy analysis is conducted to demonstrate the feasibility of the model in evaluating the potential energy saving compared with situations in which decisions are taken by operators without the aid of a model predictive control.
2024
Process control and energy saving in the ladle stage of a metal casting process through physics-based and ANN-based modelling approaches / Mastrullo, Rita; Mauro, Alfonso William; Pelella, Francesco; Viscito, Luca. - In: APPLIED THERMAL ENGINEERING. - ISSN 1359-4311. - 248:(2024). [10.1016/j.applthermaleng.2024.123135]
File in questo prodotto:
File Dimensione Formato  
ATE2024.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Dominio pubblico
Dimensione 4.61 MB
Formato Adobe PDF
4.61 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/959308
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact