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A B S T R A C T   

The process and temperature control of metal casting applications is of utmost importance both to guarantee the 
good quality of the final product and also to pursue an energy saving policy. For this purpose, in this paper two 
different modelling approaches have been proposed to predict the liquid steel temperature inside a ladle for 
metal casting, shortly before the casting process. The first is a physics-based grey-box model relying on equations 
for the characterization of the heat transfer mechanisms inside the ladle structure, whereas the second approach 
relies on artificial neural networks (ANNs). Both methods have been calibrated with experimental data of a case 
study plant, and subsequently assessed and compared in terms of prediction accuracy. Results show that the 
physics-based approach is able to predict the casting temperature with a higher mean absolute error (MAE) of 
14 ◦C, whereas the ANNs predictions result to be better, with MAEs around 6 ◦C. On the other hand, it has been 
demonstrated that the ANNs approach may lack of reliability, especially if input data strongly differ from the 
calibration dataset, whereas the physics-based approach results to be more consistent and trustworthy. Finally, 
an energy analysis is conducted to demonstrate the feasibility of the model in evaluating the potential energy 
saving compared with situations in which decisions are taken by operators without the aid of a model predictive 
control.    

Nomenclature 

Roman 
A Surface area 

[m2] 

bI,II,o Bias vector 
[-] 

c Heat capacity 
[J/kgK] 

dx Spatial integration step 
[m] 

E Energy 
[kWh] 

Emin,process Minimum energy needed to melt and heat the liquid steel 
[kWh] 

En Specific radiated power 
[W/m2] 

F12, F13, F23 Radiative view factors 
[-] 

h Convective heat transfer coefficient 
[W/m2K] 
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Nomenclature 

Roman 
A Surface area 

[m2] 

Δhlv Latent heat 
[J/kg] 

J Radiosity 
[W/m2] 

Jo Fictitious radiosity of the 0 point of the equivalent Y net 
[W/m2] 

k Thermal conductivity 
[W/mK] 

Kh Proportional coefficient to the heat transfer coefficient h 
[W/m2K1.2] 

m Mass 
[kg] 

N Number of nodes/neurons 
[-] 

Q̇ Thermal Power 
[kW] 
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(continued ) 

Nomenclature 

Roman 
A Surface area 

[m2] 

R1, R2 , R3, R12, R13, R23 Thermal Radiative Resistances 
[m− 2] 

Ra, Rb, Rc Thermal Radiative resistance of the equivalent Y net 
[m− 2] 

T Temperature 
[◦C] 

Greek 
Δ Variation 

[-] 
ε Emissivity 

[-] 
θ Generic time-step 

[s] 
σ Stephan-Boltzmann constant 

[W/m2K4] 
Abbreviations 
ANN Artificial Neural Network 
BF Blast Furnace 
BOF Basic Oxygen Furnace 
CCM Continuous casting machine 
EAF Electrical Arc Furnace 
GA Genetic Algorithm 
ML Machine Learning 
VD Vacuum Degassing 
Subscripts 
amb Ambient 
back Backfilling material 
cb Carbon bricks 
conv Convective 
disp Heat loss 
ext External 
init Initial 
int Internal 
is Insulation layer 
lat Lateral surface 
liq Liquid steel 
melt melting 
mor Cement mortar 
op Value chosen by the operator 
rad Radiative 
safety Safety lining 
shell External steel construction shell 
top Related to the top surface of the liquid steel 
Statistic indexes 
Errmax Maximum Error 
Errmin Minimum Error 
Mean Absolute Error MAE =

1
N
∑N

i=1
|yi − ypred,i|

Mean Relative Error MRE =
1
N
∑N

i=1
(yi − ypred,i)

δ±int Percentage of points falling into the ± int error band 
Std Standard Deviation  

1. Introduction 

Metal casting is a manufacturing process where molten metal is 
poured into a mold and allowed to solidify, resulting in the formation of 
intricate metal components [1]. It has been employed for centuries and 
remains a primary method for producing parts with complex shapes that 
are difficult or expensive to create using other manufacturing techniques 
[2]. Among the future challenges facing this sector, efficient process 
control and temperature regulation are crucial. The main objectives, in 
fact, are to ensure high-quality final products, to minimize the wastes of 
material, and to achieve energy saving by reducing fuel and electricity 
consumptions in the melting and refining processes [3]. In terms of 
energy consumption, it has been estimated that only in the United States 
the energy utilized by metal casting facilities is 236 trillion Btu [4], 
whereas in the UK the energy burden for casting manufacturing process 
is around 38 to 67 MJ to produce 1 kg of casting [5], with about the 
60–70 % required for the melting of the metal scraps [6,7]. A significant 

reduction in energy consumption needs to be achieved, particularly in 
the melting process, by reducing inefficiencies of furnaces, minimizing 
heat losses and non-processing time periods [8], and by reducing un-
necessary superheating of molten metals [4] used to limit breakages in 
the casting process. Therefore, digital twins and predictive models 
would give a huge enhancement into the manufacturing and metal 
casting industry, by achieving better quality, higher productivity, lower 
costs and increased flexibility [9]. 

1.1. Description of a typical metal casting process 

There are several intermediate steps needed to correctly melt the 
metal scraps and to realize the final product in a metal casting process. A 
preliminary phase consists of the storage and preparation of raw mate-
rials, such as various kinds of scrap metal (mostly alloy steel). The metal 
scrap is melted through a furnace which typically can be of three ty-
pologies: Blast Furnace (BF), Basic Oxygen Furnace (BOF) and Electrical 
Arc Furnace (EAF). BFs are typically used for iron production, whereas 
BOFs and EAFs are employed for the continuous casting and production 
of steel [10]. Worldwide, the EAF production method is preferred to the 
others due to the lower investment costs and a higher feasibility in the 
integration of steel production facilities, since the scrap steel is directly 
charged inside the EAF and an electrical arc is formed reaching tem-
peratures over 1600 ◦C [11]. After approximately 90 min, the liquid 
steel is tapped into containers (ladles) and pass through a second phase 
of ladle furnace (LF). Besides transportation purposes, ladles are also 
needed to carry out secondary refining operations with the elimination 
of sulphurs, oxides and with the adjustment of the steel chemical 
composition and temperature before casting, improving the overall 
quality of the liquid steel [12] and reaching the target steel grade by 
adding especially calcium and aluminum [13]. The working principle of 
a LF is the same of an EAF, with the creation of big current electric arcs, 
generating the thermal energy to heat the steel [14]. A second refining 
could also occur through ad additional phase which is the vacuum 
degassing (VD), able to reduce the quantity of dissolved gas which can 
have a detrimental effect on the mechanical properties of the casting, by 
causing an overriding effect on the amount of porosity and distribution 
in the final product [15]. Once all the refining operations are completed, 
the steel is sent to the continuous casting machines (CCM), where the 
casting of the final product takes place. In this phase, the liquid steel 
from the ladle is tapped into a tundish, [16]. The nature of the final 
product depends on the typology of the shape, which can be of blooms 
and slabs [17]. An overview of all the phases of an entire metal casting 
process is provided in Fig. 1. 

The transportation phases of the ladle before the casting process may 
depends on several constraints which are determined by the logistic of 
the production, and, typically, when a ladle remains stationary for a long 
time with a high temperature level, high heat losses are registered 
through the ladle walls and at the ladle top, especially when a cover is 
not employed [18]. Moreover, an accurate temperature control in the 
final casting operation is crucial to avoid segregation or, at worst, 
breakouts at excessively high temperatures, and steel contamination 
with macro-inclusion may occur at excessively low temperatures, 
causing at worst a solidification of the liquid steel inside the casting 
machine [19,20]. An accurate choice of the liquid steel temperature at 

Fig. 1. Overview of an entire metal casting process with all the phases of 
Electric Arc Furnace (EAF), Ladle Furnace (LF), Vacuum Degassing (VD, 
Optional) and Continuous Casting Machine (CCM). 
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the end of the LF phase should therefore be considered, in order to have 
a right value between a certain tolerance at the beginning of the CCM 
process. Hence, a modelling of heat loss is of utmost importance to 
guarantee a high quality of the final product, without encounter risky 
conditions for the continuous operation of the machine and for the 
performance and productivity level of the entire process. 

1.2. State of the art of predictive models, limits of the literature and 
objectives of the paper 

There are several studies in the literature done in developing models 
to forecast the heat losses between the different phases of the metal 
casting processes and predicting the liquid steel temperature in the 
process. A list of literature works dealing with this topic is provided in 
Table 1, placed in chronological order from 2001 to 2024, by dis-
tinguishing on the columns the kind of employed modelling approach, 
an estimation of the computational time and the applicability for real- 
time monitoring, if the papers carry out a validation on experimental 
data or a comparison between different approaches. For further insights, 
the review works of Diniz et al. [16] and Chen et al. [21] can also be 
considered. 

Some of the works presented, (Xia and Ahokainen [22], Ferreira et al. 
[23], Wu et al. [24], Siddiqui et al. [25]) develop multi-dimensional 
finite element models in order to investigate the thermal behaviour of 
the entire ladle (liquid steel and external structure), whereas others, 
such as the work of Pan et al. [18], compare different CFD (Computa-
tional Fluid Dynamics) approaches on the temperature field results. 
However, the employment of a 3D CFD or finite element model is usually 
suitable in a preliminary project and design phase and becomes not 
credible for predictive control due to the high computational time. 

A real-time model would be instead more practical for control pur-
poses, especially if results must be obtained in a short period of time. 
These kinds of models can be in divided into different categories, such as 
physics-based, grey-box, statistical, and machine learning based [26]. 
Very few works carry out a comparison between different modelling 
approaches, limiting the analysis only among models of the same kind 
by changing some parameters. For instance, Ahmad et al. [27] analyses 
different grey-box models among series, parallel and combined, whereas 
the works of Tian et al. [28] and He et al. [29] compares different ANN 
structures, analyzing their effect on the overall performance prediction. 
Only the work of Yuan et al. [30] proposes a comparison between 
physics-based approaches and artificial intelligence/machine learning 
methods in terms of prevision accuracy, whereas other papers analyze 
the possibility to employ ensemble hybrid physics-ML based models (Lü 
et al. [31,32], Ammar et al. [33]) in order to enhance the performance 
prediction compared to the individually applied approaches. 

To the best of authors’ knowledge, there are no other papers 
analyzing both of the two physics-based and ML-based real-time 
modelling approaches, not only comparing the two methods in terms of 
prediction accuracy, but also indicating lacks, limitations and possible 
application fields and zones for each of the investigated approaches. 

Therefore, the main target of this paper is to deepen all the afore-
mentioned features, and in detail to focus on the two following main 
aspects:  

1) To carry out a comparison in term of prediction accuracy of two 
different modelling approaches able to predict the temperature 
evolution inside of a ladle for metal casting processes; the first 
relying on a physics-based approach which considers all the heat 
transfer mechanisms of conduction, convection and radiation, and 
the second based on the calibration of several artificial neural net-
works (ANNs).  

2) To demonstrate the potentiality and applicability of each method in a 
practical use as model predictive control on a real plant facility with 
the aim to: a) optimize the management of the entire process; b) 
understand when it is better to use one or the other approach in 

dependence of the data availability; c) estimate the potential energy 
saving obtainable by employing a predictive model rather than 
standard control strategies based only on the operator experience. 
This point is also interesting for the implementation of a control 
strategy in which, depending on the external boundary conditions, 
the two approaches may operate in parallel to maximize the pre-
diction accuracy in each zone of the external condition domain. 

For both activities, field data of temperatures collected in different 
phases of the casting process have been used from a real case study of a 
foundry facility. 

2. Field data availability and methods 

2.1. Description of the database and schematic of the system modelled 

The analyzed case study is a metal casting production industry 
(STOMANA Industry S.A.), and it is one of the case studies analyzed 
within the EnerMan H2020 European Project [49]. Temperature data of 
the liquid steel for each of the process phases described in Section 1.1 are 
collected. The system modelled is a traditional ladle for metal casting, 
being a cone-shaped structure made up of several layers. A layer of 
carbon ceramic bricks is employed to resist to very high temperatures 
and to limit thermal shocks in the tapping phases. For the case study 
analyzed, 4 different brick materials have been used for this layer, which 
will be referred as “Material 1 to 4”, respectively from the top to the 
bottom of the ladle. To compensate the volume variations, a safety lining 
of Andalusite material is employed. A backfilling material is inserted 
between the carbon bricks and the safety lining to limit the encapsula-
tion of air bubbles, which may expand causing creeks and breakages of 
the ladle, whereas an insulation layer is then applied to limit the heat 
losses. Finally, all layers are encapsulated in an external shell composed 
of stainless steel. The described stratigraphy is considered for both the 
lateral and the bottom surfaces, with the only difference that the back-
filling material is not employed in the bottom parts of the ladle, and a 
layer of cement mortar between the insulation and the steel shell can 
instead be found. Moreover, due to the continuous tapping operations, 
no cover has been considered. A geometric representation of the ladle is 
provided in Fig. 2, with sections both on the longitudinal (Fig. 2(a)) and 
on the transversal directions, at different heights of the ladle (Fig. 2(b, 
c)). Other geometrical characteristics of the ladle are known; however, 
they cannot be provided due to company confidentiality issues. 

All the thermodynamic properties in terms of density, heat capacity 
and thermal conductivity for all the materials employed in the different 
layers of the system analyzed are reported in Table 2. Particularly, some 
of these data are collected from several company datasheet, whereas 
some others are taken from literature. 

2.2. Thermodynamic model equations 

The model developed in this work considers several heat transfer 
equations for different zones of the ladle geometry, in order to evaluate 
all the heat losses and so the corresponding variation of the liquid steel 
temperature. Particularly, the model is 0D type for the liquid steel, 
whereas all the others heat transfer contributions through the ladle walls 
have been modelled with a 1D approach. All the heat losses are indicated 
in Fig. 3, in which each element has been numbered as follows. The 
external ambient and the liquid steel have been referred respectively as 
“amb” and “1”. Number “2” refers to the portion of the ladle in which the 
brick layer is composed with material 1 and is not wetted by the liquid 
steel, whereas numbers “3” and “4” are related to the parts of the ladle 
composed of materials 1 and 2 respectively, both wetted by the liquid 
steel. Finally, numbers “5” and “6” are related to the bottom surfaces, 
both wetted by the liquid steel, in which the brick layer is composed of 
respectively materials 3 and 4. Regarding heat losses, two different 
convective contributions between the liquid steel volume and the 
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Table 1 
State of the art of works dealing with predictive model in foundry aiming to estimate heat losses and temperatures in different phases of the metal casting process.  

Article Description Kind of 
investigated 
model 

Computational 
time 

Results in 
real time 

Validation on 
experimental data 

Comparison among 
different modelling 
approaches 

Xia and Ahokainen 
(2001) [22] 

Model for the thermal stratification in the 
liquid steel considering turbulence and heat 
transfer 

Physics-based High No Yes No 

Ferreira et al. 
(2002) [23] 

Finite element modelling of the ladle Physics-based High No Yes No 

Pan et al. (2003)  
[18] 

1D, 2D CFD and 3D CFD models for the ladle 
heat losses 

CFD High No Yes Yes 

Gupta and 
Chandra (2004)  
[19] 

Model to control the casting superheat 
temperature 

Physics-based, 
statistical 

Medium/Low Yes Yes Yes 

Camdali and Tunc 
(2006) [34] 

Evaluation of heat losses from LF by 
conduction, convection, radiation 

Physics-based Medium Yes No No 

Dorcàk and Terpàk 
(2006) [35] 

Online system for real time monitoring and 
prediction of liquid steel temperature in LF 
and CCM 

Physics-based, 
statistical 

Medium/Low Yes Yes No 

Tian et al. (2008)  
[28] 

Temperature prediction in LF. Comparison 
between different ANN approaches 

Hybrid physics- 
based /ANN 

Medium/Low Yes Yes Yes 

Samuelsson and 
Sohlberg (2010) 
[20] 

ODE model for the steel temperature 
estimation 

Grey-box Medium Yes Yes No 

Lü et al. (2012)  
[31 32] 

Liquid steel temperature prediction in LF. 
Comparison between single ML and 
ensemble models 

Hybrid physics- 
based/ML 

Medium/Low Yes Yes Yes 

Sonoda et al. 
(2012) [36] 

Statistical model to predict a probability 
distribution of liquid steel temperature in LF 
and CCM 

Statistical Low Yes Yes No 

Wu et al. (2012)  
[24] 

Finite element model for the ladle process 
from preheating to turnover 

Physics-based High No Yes No 

Ahmad et al. 
(2014) [27] 

Casting temperature prediction and control, 
with coefficient calibrated with statistical 
tool 

Grey-box (parallel, 
serial, combined) 

Medium Yes Yes Yes 

He et al. (2014)  
[29] 

Prediction of the molten steel temperature 
in the process. Comparison between 
different ANN structure 

Hybrid physic- 
based /ANN 

Medium/Low Yes Yes Yes 

Laha et al. (2015)  
[37] 

Models to predict the production efficiency 
depending on production and system 
parameters. Comparison of different ML 
methods 

ML models Low Yes Yes Yes 

Klanke et al. 
(2017) [38] 

Methods to predict target meting 
temperature and carbon content of 10,000 
plants. Comparison of different ML methods 

ML models Low Yes Yes Yes 

Wang et al. (2018) 
[39] 

Integrated prediction and outlier detection 
of the temperature in the ladle from 17 
inputs 

Statistical Low Yes Yes No 

Botnikov et al. 
(2019) [40 41] 

Prediction of CCM initial temperature ML, statistical Low Yes Yes No 

Jo et al. (2019)  
[42] 

Model to predict the endpoint temperature 
of molten steel. Comparison between ML 
models 

Linear regression 
and ML models 

Low Yes Yes Yes 

Song et al. (2019)  
[43] 

Temperature prediction and control 
optimization in the ladle. Different ANN 
structure 

ANNs Low Yes Yes No 

Lee et al. (2020)  
[44] 

Deep neural network based model to predict 
the temperature distribution in casting 
process 

ANNs Low Yes Yes No 

Siddiqui et al. 
(2021) [25] 

Physics-based model for melt transfer, heat 
transfer, solidification in a steelmaking 
tundish 

Physics-based High No No No 

Yang et al. (2021)  
[45] 

ML Model to preset the End-point 
Temperature of molten steel 

ANNs Low Yes Yes No 

Yuan et al. (2021)  
[30] 

Ladle temperature prediction: comparison 
between physics-based and ML models 

ANNs, CBR, hybrid 
ML/Physics-bases 

Medium/Low Yes Yes Yes 

Neri and Lezzi 
(2023) [46] 

Physics-based model for temperatures and 
energy demand for different working lining 

Physics-based Medium Yes No No 

Singh et al. (2023)  
[47] 

ML models to predict process temperature in 
a BOF, LF and CCM 

ML Models Low Yes Yes No 

Sztangret et al. 
(2023) [48] 

Prediction of Ladle Temperature: 
comparison of different ML methods 

ANNs, ML models Low Yes Yes Yes 

Ammar et al. 
(2024) [33] 

Temperature prediction in casting: hybrid 
physics-based/ML approach to enhance 
prediction performance 

Hybrid physic- 
based /ANN 

Medium/Low Yes Yes Yes  
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external environment (Q̇1− amb,conv) and between the surface “2” and the 
external environment (Q̇2− amb,conv) have been considered, whereas for 
the radiation, a mutual interaction of surfaces “1”, “2”, and “amb” has 
been taken into account by solving a three surface radiation problem, 
evaluating three different heat fluxes, named respectively as Q̇1− rad,

Q̇2− rad, Q̇amb− rad. Finally, heat losses from the liquid steel across wetted 
surfaces, through respectively ladle parts “3”, “4”, “5”, and “6” (Q̇1− 3, 
Q̇1− 4, Q̇1− 5, Q̇1− 6) are contemplated, by considering the convection on 

the internal surfaces with the liquid steel, and both convection and ra-
diation with the external environment. 

The distinction between zones “2″ and “3” depends on the current 
level of the liquid steel free surface, estimated from the total mass of the 
liquid steel. 

The overall variation of the liquid steel temperature has been 
calculated with an energy balance on the entire volume of the liquid 
steel, depending on the heat losses of the ladle, as shown in Eq.1: 

Fig. 2. Schematic of the ladle modelled in this work. (a) Longitudinal section. (b) Transversal section at the top of the ladle. (c) Transversal section at the bottom of 
the ladle. 

Table 2 
Main thermodynamic properties of materials composing the ladle structure considered in this work.  

Property Liquid 
Steel 

Carbon Bricks Backfilling Safety 
Lining 

Insulation Cement 
mortar 

Steel 
Shell 

Material 
1 

Material 
2 

Material 
3 

Material 
4      

Density [kg/m3] 7000 3030 3020 3070 3100 2000 2600 185 2200 7850 
Heat Capacity [kJ/kgK] 0.365 1.3 1.3 1.3 1.3 0.88 1.3 1.65 0.90 0.49 
Thermal conductivity [W/ 

mK] 
73 7.5 7.5 7 6.5 40 1.20 0.022 1.40 45 

Source* L  
[50,51] 

SD SD SD SD SD/L 
[52] 

SD/L [53] SD/L [54] L 
[55] 

L  
[51,56] 

*L: Literature; SD: Stomana Datasheet  

Fig. 3. Main heat losses contributions (conduction, convection, radiation) for each part of the layer structure considered for the thermodynamic modelling.  
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mliqcliq
dTliq

dθ
=

(

Q̇1− amb,conv + Q̇1− rad + Q̇1− 3 + Q̇1− 4 + Q̇1− 5 + Q̇1− 6

)

(1)  

With mliq and cliq being the total mass and specific heat of the liquid steel, 
whereas dθ is the current time-step. Q̇1− amb,conv, Q̇1− rad and Q̇1− 3 to Q̇1− 6 

are all the heat loss terms, evaluated as follows. For the convection 
between the liquid steel and the external ambient (Q̇1− amb,conv), Eq. (2) 
has been used: 

Q̇1− amb,conv = htopAtop(Tliq − Tamb) (2)  

htop and Atop are respectively the heat transfer coefficient and the upper 
free surface of the liquid steel, whereas Tliq and Tamb are the liquid steel 
and ambient temperatures. 

The mutual radiative interaction problem between the free surface of 
the liquid steel, the lateral surface 2 and the external ambient has been 
solved to evaluate Q̇1− rad, Q̇2− rad and Q̇amb− rad, as shown in Fig. 4. 
Particularly, a truncated cone-shaped has been considered, with surface 
1 and 2 related respectively to the liquid steel and the carbon brick, 
whereas surface 3 is representative of the external ambient. The 
equivalent radiation network with all the corresponding thermal re-
sistances is provided in Fig. 4(b). 

The heat fluxes Q̇1− rad, Q̇2− rad and Q̇amb− rad have been evaluated by 
solving the radiation net as a function of the temperatures of surfaces 1, 
2 and the external ambient, and of the values assumed by the thermal 
resistances of the net, according to Eq. (3). The analytical solution of the 
equations system of the equivalent radiation net, as well as the equations 
for the evaluation of all the thermal resistances, are reported in 
Appendix. 

Q̇1− rad, Q̇2− rad, Q̇amb− rad = f (T1,T2,Tamb,R1,R2,R3,R12,R13,R23) (3)  

The conduction inside the wall structure of the ladle has been solved to 
evaluate the remaining heat losses Q̇1− 3 to Q̇1− 6, as well as for the 
temperature of surface 2 needed to solve the mutual radiation problem 
presented above. A detail of the stratigraphy for each layer is presented 
in Fig. 5, in which Fig. 5(a) represents the layers for the lateral not- 
wetted surfaces (“2″), Fig. 5(b) for the lateral wetted surfaces (“3”, 
“4”), whereas Fig. 5(c) for the bottom parts of the ladle (“5”, “6”). For 
each layer, a 1D conduction problem has been solved, by discretizing the 
layers width for a certain number of nodes, indicated as Ncb,Nback,Nsafety,

Nis,Nshell and Nmor for respectively the carbon bricks, the backfilling, the 
safety, the insulation, the shell and the mortar layers, each spaced with a 
spatial step indicated with dx. All the edge effects have been neglected. 

The equation system for each node and for a generic time θ are 

presented below (Eqs. (4)–(6)). All the equations have been employed 
considering an explicit resolution method. 

Q̇int +
kA
dx

[T(2) − T(1) ] =
dmc
2dθ

[
Tθ+1(1) − Tθ(1)

]
(Node 1, internal surface)

(4)  

kA
dx

[T(i − 1) − T(i) ]+
kA
dx

[T(i + 1) − T(i) ]

=
dmc
dθ

[
Tθ+1(i) − Tθ(i)

]
(Node i, internal) (5) 

k is the thermal conductivity of the specific considered material, A is 
the surface area of the infinitesimal volume, which thickness is referred 
as dx. dmc is the heat capacity of the infinitesimal volume and, for the 
nodes at the border of each material, it has been evaluated considering 
half volume of the previous layer and the remaining half of the next. For 
generalization purposes, the internal heat losses Q̇1− 3 to Q̇1− 6 are indi-
cated as Q̇int , whereas Q̇ext refers to the convective and radiative heat 
fluxes between the external surface of the ladle shell and the external 
environment. Q̇int and Q̇ext are evaluated depending on the area of the 
considered surface, and on if it is wetted or not by the liquid steel, ac-
cording to the equations reported in Table 3. 

hext , hint and εlat are respectively the external and internal conductive 
heat transfer coefficient, and surface emissivity, whereas σ is the 
Stephan-Boltzmann constant. Tliq is the actual temperature of the liquid 
steel, Tamb is the external ambient temperature, Tcb,i,int is the temperature 
of the internal wall of the carbon bricks layer of the generic surface i, 
whereas Tsh,i,ext is the temperature of the last node of the ladle shell. Aint,i 

and Aext,i are respectively the internal and external heat transfer areas 
for the generic surface i. 

Finally, for the evaluation of the heat transfer coefficients hext , hint 
and htop, Eqs. (7)–(9) have been employed, as a function of the average 
difference of temperature, in a similar form as suggested by correlations 
for the natural convection in the literature [57]. 

hint = Khint •
(
Tliq − Tint

)0.2 (7)  

hext = Khext • (Text − Tamb)
0.2 (8)  

htop = Khtop •
(
Tliq − Tamb

)0.2 (9)  

Overall, unknown constants of the model, such as Khext,Khint ,Khtop, εlat ,

εliq have been calibrated on experimental data, as shown in Section 3.2 

2.3. Resolution algorithm 

The resolution algorithm employed for the thermodynamic model-
ling approach is shown in Fig. 6. Particularly, after the ladle geometrical 
characterization, the liquid steel free surface level is evaluated, before 
dividing the ladle in parts “2″ to “6” defined in the section above. Then, 
the configuration factors and radiative thermal resistances for surfaces 1 
and 2 are evaluated (Eqs. (13) to (15) in Appendix), and an initial 
condition for the dynamic simulation is chosen, as better clarified in 
Section 2.4. For each time step θ, the mutual radiation interaction 
network is firstly solved (Eqs. (3) and (16) to (21), reported in Appen-
dix), then the conduction inside each layer is evaluated (Eqs. (4) to (6)) 
and finally the consecutive liquid steel temperature value is estimated 
through the energy balance on the entire liquid steel mass (Eq. (1)). The 

Fig. 4. (a) Schematic of the radiation problem between the liquid steel (red 
line), the carbon bricks (green line) and the external ambient (blue line, 
assuming a fictitious surface). (b) Equivalent radiation network of the problem. 

kA
dx

[T(N − 1) − T(N) ] − Q̇ext =
dmc
2dθ

[
Tθ+1(N) − Tθ(N)

]
(Node N, external surface) (6)   
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same procedure is then applied for every consecutive time steps until the 
end of the simulation time, when the total decrease of the liquid steel 
temperature along a certain period of time can be estimated. The overall 
model has been implemented in MATLAB [58]. 

2.4. Dependencies on the initial condition and examples of temperature 
evolution 

The results of the thermodynamic model strongly depend on the 
initial condition in terms of temperature of the entire ladle structure. 
However, this is always unknown from experimental data, therefore 

some actions should be applied to overcome this limitation. Particularly, 
two different approaches have been considered, referred in this work 
respectively as case a and case b.  

- Case a: the initial condition for the entire ladle structure has been 
assumed equal to a steady-state conditions occurring by fixing the 
initial internal temperature of the liquid steel and solving the con-
vection and conduction across the ladle structure.  

- Case b: the initial condition for the entire ladle structure has been 
assumed equal to a steady-state condition occurring by fixing a 
uniform initial temperature of the internal walls for each material of 
the ladle structure. In this case, this temperature value becomes 
another parameter to be calibrated on experimental data. 

Fig. 7 shows the initial temperature field for each material 
composing the entire ladle structure, depending on the total depth of the 
material itself, considering an example with an initial temperature of the 
liquid steel of 1613 ◦C, a total mass of liquid steel of 121 tons and an 
ambient temperature of 30 ◦C. Fig. 7(a) represents the temperature field 
for case a, whereas Fig. 7(b) for case b, by considering an internal wall 
temperature of 1000 ◦C. Other calibration constants of the thermody-
namic model instead have been fixed arbitrarily and reasonably 

Fig. 5. Detail stratigraphy for each part of the ladle structure. (a) Lateral surfaces not wetted by the liquid steel. (b) Lateral surfaces wetted by the liquid steel. (c) 
Bottom surfaces wetted by the liquid steel. 

Table 3 
Equations for the evaluation of internal and external heat fluxes depending on 
the ladle surface number.  

Surface 
number: 

Q̇int Q̇ext 

2 h*
extAint

(
Tamb − Tcb,2,int

)
− Q̇2− rad hextAext,i

(
Tsh,i,ext − Tamb

)
+

εlatAext,i σ
[
T4

sh,i,ext − T4
amb

]
3…6 hintAint,i(Tliq − Tcb,i,int)

*Evaluated assuming the same heat transfer coefficient for the external convection 
(hext)  
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(Kh,ext = 20 W/m2K1.2;Kh,int = 30 W/m2K1.2; Kh,liq = 20 W/ 
m2K1.2; εlat = 0.4; εliq = 0.2). 

To show the real dependencies of the results from the initial condi-
tion, Fig. 8 shows the temperature decrease of the liquid steel due to heat 
losses along a time period of 5000 s, for both the cases a and b, 
considering as an example only one experimental point and executing 
the model with the same boundary conditions of the experimental point 
itself. In detail, case a is represented by the red line, whereas case b by 
the blue and green lines, for an internal wall temperature of 1200 ◦C and 
1000 ◦C, respectively. It is worth noting that, considering the previously 
fixed calibration constants, an internal temperature slightly below 
1000 ◦C would give the best prediction accuracy of the model for that 
point. However, it should be clarified that the one presented in Fig. 8 is 
only an illustrative example and does not want to demonstrate the ac-
curacy of the model. As a matter of fact, an exhaustive calibration of all 
the constants is carried out in Section 3.2, and the accuracy of each case 
is shown in Figs. 11 and 12. 

2.5. ANN models 

Another approach based on ML has been developed for the system 
analyzed. Particularly, Artificial Neural Networks have been considered 
and a schematic example for the developed ANNs is provided in Fig. 9. 

Each connection represents a weight, whereas each neuron is an 
activation function taking the sum of input signals from the previous 
layer and transferring it to the next one [59,60]. The red boxes represent 
the input layers, composed of N different inputs, whereas the blue circle 
is the output layer. Furthermore, the yellow rhombuses are related to the 
hidden layers, each of them characterized by a certain number of neu-
rons (NI,NII), whereas the yellow circles below (bI,bII,bo) represent the 
bias vectors related respectively to the hidden and output layers. 

In this work, 16 different ANNs able to predict the first CCM tem-
perature have been assessed and compared in terms of prediction ac-
curacy. They have been divided into 4 different groups which differ from 
the number of input variables, ranging from 3 to 7, and from the cali-
bration database. The input choice for each group of ANN has been 
selected as a result of a preliminary sensitivity analysis between inputs 
and outputs, not reported in this paper for brevity. Other different 
characteristics of the ANNs are the number of hidden layers, among 2 or 
3, and the number of neurons of each hidden layer, ranging between 4 
and 25. The number of hidden layers and neurons have been chosen 
according to the Zhang Method [61], and to some other evidences of the 
literature [29,43]. Other features are provided in Table 4. Group (1) 
contains only one neural network characterized by three inputs (last 
temperature of the LF process, mass of the liquid steel and time interval 
between the end of LF and the start of CCM), calibrated with all the 
experimental points of the database. In group (2), three more inputs are 
added (time periods between the end of EAF and the start of LF, between 
the start and the end of LF, and between two consecutive starting time of 
a single ladle), with several ANNs calibrated only on 2019 data. Group 
(3) instead considers a new input indicating the number of usages before 
a maintenance renew operation of a ladle, with all the ANNs calibrated 
on the whole available dataset. Finally, ANNs belonging to group (4) 
have the same structure of group (2), with the only difference that they 
have been calibrated on data for which the number of usages for each 
ladle before maintenance is less than 50. The entire database has been 
divided in 70 % for training, 15 % for validation and 15 % for testing, as 
usually carried out also in other similar works and applications [62]. 
The ANNs have been developed by means of the MATLAB Deep Learning 
Toolbox, and the normalization of input data, needed when ANNs are 
used [63], is automatically applied by the software. 

Fig. 6. Resolution Algorithm for the thermodynamic physics-based model.  

Fig. 7. Initial temperature profile inside each layer of the ladle structure, as a function of the total depth of the layer itself, for case a (a) and case (b) respectively, 
assuming an internal wall initial temperature of 1000 ◦C. For further details on materials 1 to 4 please refer to Fig. 2 and Table 2. 
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3. Results 

3.1. Experimental ranges of inputs and outputs 

Table 5 shows a statistical overview of the variation ranges for each 
of the measured parameters of temperatures and time period between 
phases, reporting minimum, maximum, average values and standard 
deviation. It is worth noting that TLF,last , TCCM,first and mliq assume often 
similar values, whereas the ranges of the time periods between the 
different phases are broader. On the other hand, Fig. 10 shows an 
example of temperature evolution along all the metal casting processes, 
both in case of absence (Fig. 10(a)) and presence (Fig. 10 (b)) of the VD 
phase. 

3.2. Calibration of the physics-based model and validation 

For the physics-based model application, several unknown parame-
ters for the evaluation of the internal and external convective heat 
transfer coefficients and for the emissivity of lateral and liquid steel 
surfaces have been calibrated on experimental data. Two different cal-
ibrations have been performed considering both cases a and b defined in 
Section 2.4, with the addition that in case b also the internal initial 
temperature has been considered as a variable to be calibrated. A genetic 
algorithm (GA) has been employed to find the optimal selection of 
calibration variables able to minimize the mean absolute error (MAE) 
between the experimental and predicted values for the first temperature 
of the CCM process. For the GA, the following hyperparameters have 
been considered: maximum generation of 200*number of input 

Fig. 8. Example of the dependence of the liquid steel temperature decrease by the initial condition, and comparison with an experimental point.  

Fig. 9. Generic schematic of the ANNs structure considered in this work.  

Table 4 
List of ANNs considered in this paper, divided in 4 different groups depending on 
the number and type of Inputs and Outputs, the calibration database employed 
and the network structure.  

Number Inputs Outputs Net 
Structure* 

Database 

1 TLF,last , mliq,

Δθend,LF− start,CCM 

TCCM,first 3-20-20-1 All points 
(13200) 

2.a TLF,last , mliq,

Δθend,LF− start,CCM ,

ΔθendEAF− startLF,

ΔθstartLF− endLF ,

Δθend,lastoperation,ladle 

6-25-12-1 Point of the 
year 2019 
(4400) 

2.b 6-25-12-3- 
1 

2.c 6-12-12-1 
2.d 6-8-8-1 
2.e 6-4-4-1 
3.a TLF,last , mliq,

ΔθendLF− startCCM, 
ΔθendEAF− startLF,

ΔθstartLF− endLF ,

Δθend,lastoperation,ladle,

Number of usages before 
renew 

7-25-12-1 All points 
(13200) 3.b 7-25-12-3- 

1 
3.c 7-12-12-1 
3.d 7-8-8-1 
3.e 7-4-4-1 

4.a TLF,last , mliq,

ΔθendLF− startCCM,

ΔθendTAP− startLF,

ΔθstartLF− endLF ,

Δθend,lastoperation,ladle 

6-25-12-1 All ladles with 
number of 
usages before 
renewing less 
than 50 (1422) 

4.b 6-25-12-3- 
1 

4.c 6-12-12-1 
4.d 6-8-8-1 
4.e 6-4-4-1 
*in the form “x-a1-a2-..-an-y” in which “x” is the number of inputs, “y” the number of 

outputs, “a1, a2, an” are the number of neurons of each hidden layer, with n the 
number of hidden layers.  

Table 5 
Variation ranges for all the inputs and outputs of the investigated approaches, 
indicated in Table 4.  

Variable Minimum Maximum Average Std 

TLF,last[◦C] 1527 1715 1598 25 
mliq[tons] 90 132 118 8 
Δθend,LF− start,CCM[s] 600 5500 2092 1061 
ΔθendEAF− startLF[s] 100 4000 1204 903 
ΔθstartLF− endLF[s] 150 10,500 4916 2663 
Δθend,lastoperation,ladle 1000 30,000 5929 5447 
Number of usages before renew 

[-] 
2 1162 328 265 

TCCM,first[◦C] 1490 1570 1541 11  
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variables, population size of 100, crossover fraction of 0.5, function 
tolerance of 10− 4. The following variation intervals for the calibration 
variables have been assumed:  

• Proportional coefficient for the evaluation of the external convective 
heat transfer coefficient (Khext ) between 0.5 and 250 W/m2K1.2;  

• Proportional coefficient for the evaluation of the internal convective 
heat transfer coefficient (Khint ) between 10 and 500 W/m2K1.2;  

• Proportional coefficient for the evaluation of the convective heat 
transfer coefficient at the free-surface of the liquid steel (Khtop ) be-
tween 0.5 and 250 W/m2K1.2;  

• Emissivity of the lateral surface (εlat) between 0.01 and 1;  
• Emissivity of the free surface of the liquid steel (εliq) between 0.01 

and 1;  
• Initial temperature of the internal surface of the ladle structure (only 

for case b) between 1000 and 1500 ◦C; 

Results of the calibration parameters evaluated by the GA, for both 
cases a and b are presented in Table 6. 

Result of the first CCM temperature experimental and predicted by 
the thermodynamic model is instead provided in Fig. 11. Statistic in-
dexes in terms of mean absolute error (MAE), mean relative error (MRE), 
maximum (Errmax) and minimum (Errmin) errors, percentage of point 
falling within the error band ±20◦C (δ±20◦ C) and standard deviation 
(Std) are also reported both in figures, and in Table 7. Particularly, for 
case a (Fig. 11(a)) the model is able to predict the temperature with a 
MAE of 13.3 ◦C, and a percentage δ±20◦ C of 76.6 %. On the other hand, 
for case b (Fig. 11(b)) no improvements in terms of prediction accuracy 
are obtained, with a higher MAE of approximately 14 ◦C, and a slightly 
lower percentage δ±20◦ C of about 76.2 %. 

Therefore, the prediction of the model cannot ignore the initial 
conditions in terms of initial internal temperature of the ladle, since no 
potential improvements could be obtained by optimizing that variable. 
As a matter of fact, the prediction accuracy of the thermodynamic model 
could be significantly improved if the effective initial condition of the 
ladle, which is not currently measured in the analyzed case study, would 
have been known. 

3.3. Validation of the ANN models 

Results of the prediction accuracy for all the groups of ANNs defined 
in Table 4, in terms of predicted vs. experimental first CCM temperature 
are provided in Fig. 12. Fig. 12(a) shows the validation for the group (1), 
at which belongs only one neural network, whereas Fig. 12(b), (c) and 
(d) shows results for respectively groups (2), 3, and 4, each of them 
which includes 5 different ANNs. 

Statistic indexes for each of the investigated ANNs are instead re-
ported in Table 7. It is worth noting that, by increasing the number of 
inputs (passing from 3 of group (1) to (6) and 7 of respectively groups (2) 
and (3), a slight increase in prediction performance is registered (with 
MAE passing from 6.1 ◦C on average to 5.9 ◦C and δ±20◦ C which remains 
almost constant with the value of 97.7 %), whereas a slight decrease of 
performance can be noted if only the ladles with a number of usage less 
than 50 are used (with a MAE of approximately 7.1 ◦C on average and 
δ±20◦ C ranging between 96 % and 97 %. Regarding the choice of the 
ANNs structure, the numbers of neurons and hidden layers slightly affect 
the results, with a general tendency to marginally improve the predic-
tion performance with more complex structures. Finally, the prediction 
performance obtained in predicting the experimental points by means of 
all the ANNs is higher than the ones for the thermodynamic model. In 
fact, the thermodynamic model results may be affected in a non- 
negligible way by other hidden effects such as unknown or not- 
measured data (e.g. initial conditions) and measuring equipment un-
certainty. On the other hand, an ANN is able to directly incorporate all 
these effects by means of the calibration process on experimental data. 

3.4. Lacks and limitations of the ANN-based approach 

The developed models have been iteratively solved to estimate the 
optimal last LF temperature to be guaranteed. Particularly, the inputs in 
simulation mode are: the target first CCM temperature, the mass of 
liquid steel and the Δtime between the LF and CCM phases, whereas the 
output become the optimal last LF temperature. In order to analyze lacks 
and limitations of the analyzed approaches, the predictions of both 
models in terms of last LF temperature obtained for three experimental 
tests have been compared, as reported in Fig. 13. Particularly, the field 
data are represented with colored dots, whereas the dashed lines show 
the predictions of the model obtained considering as inputs the same 

Fig. 10. Temperature evolution along all the metal casting processes for two different examples. (a) Absence of VD phase. (b) Presence of VD phase.  

Table 6 
Results for the calibration parameters of the thermodynamic model obtained through the GA for both the initial condition cases a and b.  

Initial Condition Case Khext[W/m2K1.2] Khint[W/m2K1.2] Khtop[W/m2K1.2] εlat[-] εliq[-] T◦

int,initC 

a  126.3  207.9  26.1  0.019  0.025 −

b  0.69  15.3  10.1  0.85  0.19 1276.3  
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masses of liquid steel and first CCM temperatures of the experimental 
points, and values of time between the LF and CCM phases ranging from 
0 to 1.5 h. It is worth noting that the Physics-based approach (Fig. 13(a)) 
is able to predict the experimental data with lower accuracy than the 
ANN-based approach (Fig. 13(b)), as evidenced also by results in Section 

3.3. On the other hand, the ANN-based approach may give completely 
not-physical results, if queried for inputs which differ from the cali-
bration dataset. For instance, according to the ANN, the last LF tem-
perature does not change anymore for a ΔtimeLF− CCM lower than 0.5 h, 
assuming constant values around 1600 ◦C, whereas it starts to decrease 
for a ΔtimeLF− CCM higher than approximately 1.2 h. 

Therefore, although a ML based approach could result in higher ac-
curacy compared with traditional physics-based methods, the usage of 
ANNs could lead to completely unphysical and mistaken results, if they 
are used for inputs which are too far and different from the data used for 
the calibration. 

3.5. Potential energy saving 

Due to the limitations of the ANN approach, and a higher consistency 
and reliability of the physics-based model, this approach has been 
employed to perform an energy analysis, in order to evaluate the 
achievable energy saving, compared with a baseline scenario in which a 
non-optimal last LF temperature is chosen by an operator according to 
his experience without the aid of a predictive model. As a matter of fact, 
in this case the operator chooses a last LF temperature which is 
approximately 50 ◦C and 120 ◦C higher than the target temperature, 
respectively in case of absence and presence of the VD phase, in a way to 
avoid solidification effects before and during the casting process with 
high safety margins. The potential energy saved (ΔEsaved) has been 
evaluated as follows: 

ΔEsaved = mliq • cliq •
(
TlastLF,op − TlastLF,optimal

)
(10) 

Fig. 11. Prediction accuracy of the physics-based approach in terms of first CCM temperature experimental vs. predicted, for both initial condition cases a (a) and 
b (b). 

Table 7 
Statistical indexes in terms of MAE, MRE, Errmax, Errmin δ±20◦ C , Std for the prediction accuracy of all the models analyzed in this work.  

Model MAE [◦C]MRE [◦C] Errmax [◦C] Errmin [◦C] δ±20◦ C [%] Std [◦C] 

Physics-based Case a 13.3 − 1.75 109.4 − 59.7 76.6 17.5 
Case b  14.1  0.02  131.1  − 54.9  76.2  19.0 

ANN-based 1  6.1  0.02  49.2  − 116.0  97.7  8.2 
2.a  6.0  0.78  44.8  − 57.9  97.6  8.0 
2.b  6.0  − 0.02  49.4  − 55.6  97.5  8.1 
2.c  5.9  − 0.04  42.6  − 58.0  97.8  7.9 
2.d  6.1  0.03  40.1  − 56.9  97.2  8.2 
2.e  6.0  0.10  49.0  − 58.9  97.6  8.1 
3.a  5.9  − 0.09  48.4  − 67.2  97.8  8.0 
3.b  5.8  − 0.04  51.9  − 61.4  97.8  7.9 
3.c  6.0  0.04  51.0  − 60.7  97.7  8.0 
3.d  6.0  0.11  52.1  − 63.3  97.7  8.0 
3.e  6.0  − 0.04  54.5  − 59.3  97.5  8.1 
4.a  6.9  − 0.15  40.7  − 45.8  96.7  9.1 
4.b  7.2  0.75  31.1  − 45.7  96.8  9.2 
4.c  6.9  0.06  41.4  − 35.4  97.1  8.9 
4.d  7.1  − 0.26  36.5  − 45.3  96.2  9.3 
4.e  7.2  − 0.17  45.6  − 44.2  96.3  9.5  

Fig. 12. Prediction accuracy of the ANN based approaches in terms of first 
CCM temperature experimental vs. predicted, for ANN groups (1) (a), 2 (b), 3 
(c) and 4 (d) defined in Table 3 
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With mliq the mass of the liquid steel, whereas TlastLF,op and TlastLF,optimal 

are the last LF temperature respectively chosen by the operator experi-
ence and the optimal evaluated through the model. On the other hand, 
the heat losses (Edisp), considering the optimal temperature profile of the 
liquid steel, have been estimated with the following relation: 

Edisp = mliq • cliq •
(
TlastLF,optimal − TfirstCCM,target

)
(11)  

Where TfirstCCM,target is the target last CCM temperature to be reached. All 
these energy fluxes have been compared with a baseline energy con-
sumption of the entire furnace process, considered as the minimum 
amount of energy needed to melt the liquid steel and heating it from the 
ambient temperature to the last LF optimal temperature, evaluated as 

follows: 

Emin,process = mliq •
[
csolid(Tmelt − Tamb)+Δhlv + cliq

(
TlastLF,optimal − Tmelt

) ]

(12)  

Where Tmelt and Δhlv are respectively the melting temperature and the 
fusion latent heat of the liquid steel. This contribution is the minimum 
amount of energy to provide to the entire furnace process and does not 
consider any other heat loss and inefficiencies of the EAF and LF 
respectively. 

Results of the energy analysis are presented numerically in Table 8. 
Particularly, a mass of 100 t of liquid steel has been considered, with a 
target first CCM temperature of 1550 ◦C, and an idle time between the LF 
and CCM processes of 2000 s. Moreover, a non-optimal last LF tem-
perature chosen by an operator of 1750 ◦C has been selected, and an 
ambient temperature of 30 ◦C. The model gives as outputs the optimal 
last LF temperature (Tlast,LF,optimal) which is about 1621 ◦C, approximately 
130 ◦C lower than the one chosen by the operator without the aid of the 
predictive model. Moreover, the first CCM temperature reached if the 
last LF temperature chosen by the operator (Tfirst,CCM,op) is approximately 
105 ◦C higher than the target first CCM temperature value. Finally, all 
the energy fluxes are evaluated, as well as the ratios of the energy saved 
and dispersed on the minimum baseline energy. 

Graphically, Fig. 14(a) shows a comparison of the liquid steel 

Fig. 13. Last LF temperature experimental (colored dots) and predicted by the physics-based (a) and ANN-based (b) approaches (dashed lines), for the same mliq and 
Tfirst,CCM of the experimental tests, as a function of the time between the LF and CCM phases. 

Table 8 
List of Inputs and Outputs employed for the energy analysis in the example 
provided in this section.  

INPUTS OUTPUTS 

mliq [t] 100 Tlast,LF,optimal [◦C] 1620.6 
Tfirst,CCM,target [◦C] 1550 Tfirst,CCM,op [◦C] 1654.4 
Tlast,LF,op [◦C] 1750 ΔEsaved[kWh] 1311.9 
Δθend,LF− start,CCM[s] 2000 Edisp[kWh] 715.9 
Tamb [◦C] 30 Emin,process[kWh] 29,221   

ΔEsaved/Emin,process[%] 4.49   
ΔEdisp/Emin,process[%] 2.45  

Fig. 14. (a) Liquid steel temperature decrease due to heat losses, considering the optimal last LF temperature (green profile) and a non-optimal choice made by an 
operator (red profile). (b) Energy fluxes in terms of energy saved (ΔEsaved), dispersed (Edisp) and baseline (Emin,process). 
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temperature decrease between the optimal profile (in green), obtained 
considering as first CCM temperature the optimal target value, and the 
one selected by the operator (in red), considering the last LF temperature 
chosen without the aid of the predictive model. Fig. 14(b) instead shows 
the results in terms of energy saved (in red), dispersed (in green) and 
minimum baseline to heat the liquid steel from the ambient to the 
optimal last LF temperatures (in blue). Overall, in this example the en-
ergy dispersed is 716 kWh, approximately 2.5 % of the baseline energy 
amount, whereas the energy saved results to be 1312 kWh, about the 4.5 
% of the baseline. 

A simple economic analysis has been carried out in order to estimate 
the potential cost savings deriving from the implementation and usage 
of the predictive model. In detail, it has been assumed that 10 equal 
casting processes occur during a single day (typical number for a metal 
casting company), and an electricity cost of 0.22 €/kWh has been 
considered (European average electricity cost for non-household con-
sumers according to Eurostat [64]). Overall, a cost saving of about 2.89 
k€ per day is obtained, against a total minimum amount of energy cost of 
64.29 k€ per day to melt the entire mass of metal scraps. 

4. Conclusions 

Having at disposal a model in metal casting application able to 
predict the future behaviour of energy intensive systems would improve 
the control logics by enhancing energy saving opportunities in the field. 
In this paper two different approaches, physics-based and ANN based, 
have been proposed to model heat losses of a ladle used in foundry and 
to assess the temperature of the liquid steel shortly before the casting 
process. The key findings are outlined below: 

• The physics-based grey-box model was developed based on funda-
mental heat transfer principles involving conduction, convection and 
radiation through the ladle structure. Two different scenarios, 
labeled as case a and b, were considered depending on the initial 
conditions set. The second approach instead comprises several ANNs, 
each differing in the number of inputs and outputs, as well as in the 
structure and in the calibration database.  

• Both approaches were calibrated using experimental data from a real 
case study facility. Specifically, for the physics-based approach, 
various unknown constants were adjusted to minimize the mean 
absolute error (MAE) in predicting field data, while the ANNs were 
calibrated by partitioning the entire database in 70 % for training, 
15 % for validation and 15 % for testing.  

• Results show that, for case a, the thermodynamic approach can 
predict the experimental initial liquid steel casting temperature with 
a MAE of approximately 13 ◦C, with the 77 % of points falling within 
the error band ±20◦C. Conversely, no significant improvements were 
observed for case b, where MAE of the prediction is about 14 ◦C, with 
a δ±20◦ C of approximately 76 %. 

• In contrast, the ANN-based approach yields better prediction accu-
racy of the first CCM temperature, with a, average MAE of about 6 ◦C. 
Overall, while a slight improvement may be noticed by increasing 
the number of inputs for the prediction, the network structure 
(number of hidden layers and neurons) has a minimal influence on 
the overall prediction accuracy.  

• Finally, the physics-based model was used to evaluate the potential 
energy saving compared to a baseline scenario where the decisions 
are made by an operator without a model predictive control. 

Particularly, it was found that, for 100 tons of liquid steel, if the 
operator considers a last LF temperature approximately 130 ◦C 
higher than the optimal value, an energy saving of approximately 
1300 kWh can be achieved, equivalent to about the 4.5 % of the 
minimum baseline energy required to heat the same mass of liquid 
steel up to the optimal last LF temperature. 

In conclusion, for this specific case study, the ANNs yields better 
performance in predicting the first CCM temperature rather than the 
physics-based approach. This may be attributed to the fact that ther-
modynamic model results are heavily influenced by the initial condi-
tions of the ladle structure, which are not known from the experimental 
data of this case study. On the other hand, ANNs are capable of intrin-
sically incorporating all the missing information, leading to more ac-
curate results. However, the use of ANNs may entail some risk, 
especially in extrapolating unphysical predictions beyond the calibra-
tion ranges, while the reliability of physics-based approaches, which 
never yield completely erroneous results, is usually higher in these 
conditions. Hence, employing both approaches in parallel would 
enhance the performance prediction and provide suggestions to the 
operators, that would be more conscious in making the right decisions. 
In this regard, the ANNs approach would operate effectively only in 
proximity of previously experimented boundary conditions, while for 
conditions significantly divergent from the norm, a physics-based 
approach could be employed for greater consistency. Furthermore, a 
physics-based approach could be used to conduct future scenario ana-
lyses, for instance change of production volume, change of temperature 
level etc., utilizing inputs data which completely differs from historical 
values. Finally, it should be noted that similar methods could be applied 
also to the remaining phases of the process. In future works we will 
consider the possibility to provide a complete “digital twin” able to 
optimize the entire process, further enhancing the system performance 
and the energy savings. 
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Appendix 

Solution of the mutual radiation problem between the liquid steel, the external ambient and the ladle structure 

To solve the equivalent radiation net proposed in Fig. 4(b), the following transformation Δ→Y has been applied, as shown in Fig. 15.

Fig. 15. transformation to the equivalent radiation network, able to simplify the resolution equation system  

All the thermal resistances have been evaluated according to Baehr and Stephan [65] as shown in Eqs. (13) and (14): 

R1 =
1 − εliq

Atop • εliq
;R2 =

1 − εlat

Aint, 2•εlat
; R3 =

1 − εamb

Aamb • εamb
= 0; (13)  

R12 =
1

Atop•F12
; R13 =

1
Atop • F13

; R23 =
1

Aint,2•F23
(14)  

Particularly, due to the much higher surface of the external ambient compared with the others, the thermal resistance R3 has been imposed equal to 
zero. Moreover, the configuration factors F12, F13, F23 have been evaluated according to [65], considering a truncate cone shape geometry. 

The new resistances of the equivalent Y network can be evaluated according to Qin and Cheng (2003) [66], as shown in Eq. (15). 

Ra =
R13 • R12

R13 + R23 + R12
Rb =

R23 • R12

R13 + R23 + R12
Rc =

R13 • R23

R13 + R23 + R12
(15)  

Therefore, for each resistance of the equivalent Y network, the following equations (Eq. (16)) can be written: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q̇1− rad =
En1 − J0

R1 + Ra

Q̇2− rad =
En2 − J0

R2 + Rb

Q̇amb− rad =
En3 − J0

Rc

Q̇1− rad + Q̇2− rad + Q̇amb− rad = 0

(16)  

J0 is the fictitious radiosity the central point of the equivalent Y net, whereas En1, En2 and En3 are the specific radiated powers from each surface, which 
can be evaluated with the Stephan-Bolzmann Law [65], as shown in Eq. (17): 

En1 = σ • T4
1 En2 = σ • T4

2 En3 = σ • T4
3 (17)  

Considering as unknowns the three radiation heat fluxes from the three surfaces (Q̇1− rad, Q̇2− rad, Q̇amb− rad) and the fictitious radiosity J0, the solutions of 
the linear systems are the ones of Eqs. (18)–(21): 

Q̇1− rad =
En1R2 − En3R2 + En1Rb − En3Rb + En1Rc − En2Rc

R1R2 + R2Ra + R1Rb + R1Rc + R2Rc + RaRb + RaRc + RbRc
(18)  
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Q̇2− rad =
En2R1 − En3R1 ++En2Ra − En3Ra − En1Rc + En2Rc

R1R2 + R2Ra + R1Rb + R1Rc + R2Rc + RaRb + RaRc + RbRc
(19)  

Q̇amb− rad = −
En1R2 + En2R1 − En3R1 − En3R2 + En2Ra − En3Ra + En1Rb − En3Rb

R1R2 + R2Ra + R1Rb + R1Rc + R2Rc + RaRb + RaRc + RbRc
(20)  

Jo =
En3R1R2 + En3R2Ra + En3R1Rb + En1R2Rc + En2R1Rc + En3RaRb + En2RaRc + En1RbRc

R1R2 + R2Ra + R1Rb + R1Rc + R2Rc + RaRb + RaRc + RbRc
(21)  
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