In this paper, we address the image denoising problem in presence of speckle degradation typically arising in ultra-sound images. Variational methods and Convolutional Neural Networks (CNNs) are considered well-established methods for specific noise types, such as Gaussian and Poisson noise. Nonetheless, the advances achieved by these two classes of strategies are limited when tackling the de-speckle problem. In fact, variational methods for speckle removal typically amounts to solve a non-convex functional with the related issues from the convergence viewpoint; on the other hand, the lack of large datasets of noise-free ultra-sound images has not allowed the extension of the state-of-the-art CNN denoiser methods to the case of speckle degradation. Here, we aim at combining the classical variational methods with the predictive properties of CNNs by considering a weighted total variation regularized model; the local weights are obtained as the output of a statistically inspired neural network that is trained on a small and composite dataset of natural and synthetic images. The resulting non-convex variational model, which is minimized by means of the Alternating Direction Method of Multipliers (ADMM) is proven to converge to a stationary point. Numerical tests show the effectiveness of our approach for the denoising of natural and satellite images.

Speckle noise removal via learned variational models / Cuomo, S.; De Rosa, M.; Izzo, S.; Piccialli, F.; Pragliola, M.. - In: APPLIED NUMERICAL MATHEMATICS. - ISSN 0168-9274. - (2023). [10.1016/j.apnum.2023.06.002]

Speckle noise removal via learned variational models

Cuomo S.;De Rosa M.;Izzo S.;Piccialli F.;Pragliola M.
2023

Abstract

In this paper, we address the image denoising problem in presence of speckle degradation typically arising in ultra-sound images. Variational methods and Convolutional Neural Networks (CNNs) are considered well-established methods for specific noise types, such as Gaussian and Poisson noise. Nonetheless, the advances achieved by these two classes of strategies are limited when tackling the de-speckle problem. In fact, variational methods for speckle removal typically amounts to solve a non-convex functional with the related issues from the convergence viewpoint; on the other hand, the lack of large datasets of noise-free ultra-sound images has not allowed the extension of the state-of-the-art CNN denoiser methods to the case of speckle degradation. Here, we aim at combining the classical variational methods with the predictive properties of CNNs by considering a weighted total variation regularized model; the local weights are obtained as the output of a statistically inspired neural network that is trained on a small and composite dataset of natural and synthetic images. The resulting non-convex variational model, which is minimized by means of the Alternating Direction Method of Multipliers (ADMM) is proven to converge to a stationary point. Numerical tests show the effectiveness of our approach for the denoising of natural and satellite images.
2023
Speckle noise removal via learned variational models / Cuomo, S.; De Rosa, M.; Izzo, S.; Piccialli, F.; Pragliola, M.. - In: APPLIED NUMERICAL MATHEMATICS. - ISSN 0168-9274. - (2023). [10.1016/j.apnum.2023.06.002]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/946998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact