his research proposes a new image compression method based on the F1-transform which improves the quality of the reconstructed image without increasing the coding/decoding CPU time. The advantage of compressing color images in the YUV space is due to the fact that while the three bands Red, Green and Blue are equally perceived by the human eye, in YUV space most of the image information perceived by the human eye is contained in the Y band, as opposed to the U and V bands. Using this advantage, we construct a new color image compression algo rithm based on F1-transform in which the image compression is accomplished in the YUV space, so that better-quality compressed images can be obtained without increasing the execution time. The results of tests performed on a set of color images show that our color image compression method improves the quality of the decoded images with respect to the image compression algorithms JPEG, F1-transform on the RGB color space and F-transform on the YUV color space, regardless of the selected compression rate and with comparable CPU times.

Fuzzy Transform Image Compression in the YUV Space / Cardone, Barbara; DI MARTINO, Ferdinando; Sessa, Salvatore. - In: COMPUTATION. - ISSN 2079-3197. - 11:10: 191(2023). [10.3390/computation11100191]

Fuzzy Transform Image Compression in the YUV Space

cardone barbara;di martino ferdinando
;
sessa salvatore
2023

Abstract

his research proposes a new image compression method based on the F1-transform which improves the quality of the reconstructed image without increasing the coding/decoding CPU time. The advantage of compressing color images in the YUV space is due to the fact that while the three bands Red, Green and Blue are equally perceived by the human eye, in YUV space most of the image information perceived by the human eye is contained in the Y band, as opposed to the U and V bands. Using this advantage, we construct a new color image compression algo rithm based on F1-transform in which the image compression is accomplished in the YUV space, so that better-quality compressed images can be obtained without increasing the execution time. The results of tests performed on a set of color images show that our color image compression method improves the quality of the decoded images with respect to the image compression algorithms JPEG, F1-transform on the RGB color space and F-transform on the YUV color space, regardless of the selected compression rate and with comparable CPU times.
2023
Fuzzy Transform Image Compression in the YUV Space / Cardone, Barbara; DI MARTINO, Ferdinando; Sessa, Salvatore. - In: COMPUTATION. - ISSN 2079-3197. - 11:10: 191(2023). [10.3390/computation11100191]
File in questo prodotto:
File Dimensione Formato  
computation-11-00191.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 2.29 MB
Formato Adobe PDF
2.29 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/940756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact