

Computation 2023, 11, 191. https://doi.org/10.3390/computation11100191 www.mdpi.com/journal/computation

Article

Fuzzy Transform Image Compression in the YUV Space
Barbara Cardone 1, Ferdinando Di Martino 1,2,* and Salvatore Sessa 1,2

1 Department of Architecture, University Federico II, Naples, Italy, Via Toledo 402, 80134 Napoli, Italy;
b.cardone@unina.it (B.C.);fdimarti@unina.it (F.D.M); sessa@unina.it or salvasessa@gmail.com (S.S.)

2 Resarch Interdipartimental center “Alberto Calza Bini”, University Federico II, Naples, Italy,
Via Toledo 402, 80134 Napoli, Italy

* Correspondence: fdimarti@unina.it; Tel.: +39-0812538908 or +39-3334529362; Fax: +39-081238905

Abstract: This research proposes a new image compression method based on the F1-transform
which improves the quality of the reconstructed image without increasing the coding/decoding
CPU time. The advantage of compressing color images in the YUV space is due to the fact that
while the three bands Red, Green and Blue are equally perceived by the human eye, in YUV space
most of the image information perceived by the human eye is contained in the Y band, as opposed
to the U and V bands. Using this advantage, we construct a new color image compression algo-
rithm based on F1-transform in which the image compression is accomplished in the YUV space, so
that better-quality compressed images can be obtained without increasing the execution time. The
results of tests performed on a set of color images show that our color image compression method
improves the quality of the decoded images with respect to the image compression algorithms
JPEG, F1-transform on the RGB color space and F-transform on the YUV color space, regardless of
the selected compression rate and with comparable CPU times.

Keywords: F-transform; F1-transform; color image compression; RGB; YUV

1. Introduction
YUV is a color model used in the NTSC, PAL, and SECAM color encoding systems,

which describes the color space in terms of a brightness component (the Y band called
luma) and the two chrominance components (the U and V bands are called chroma).

The YUV model has been used in image processing: its main advantage is that un-
like of the Red, Green and Blue (RGB) bands, perceived by the human eye, in YUV space,
most of the color image information is contained in the Y band, as opposed to the U and
V bands. The main application of the YUV model in image processing is related to the
lossy compression of images, which can be performed mainly in the U and V bands, with
slight loss of information.

YUV is used in the JPEG color image compression method [1,2] where the Discrete
Cosine Transform (DCT) algorithm is executed on the YUV space, sub-sampling and
reducing the UV channels in a dynamic range in order to balance the reduction in data
and the feel of human eyes. In [3], the DCT algorithm is executed in the YUV space for
wireless capsule endoscopy application: the results show that the quality of the recon-
structed images is better than that obtained by applying the DCT image compression
method in the RGB space.

Many authors proposed image compression and reconstruction algorithms applied
on the YUV space in order to improve the quality of the reconstructed images.

In [4,5] an image compression algorithm based on fuzzy relation equations is ap-
plied in the YUV space to compress color images: the image is divided into blocks of
equal sizes, coding the blocks in the UV channels more strongly than blocks in the Y
band. In [6,7], the Fuzzy Transform technique (for short F-transform) [8] is applied to
coding color images in the YUV space: the authors show that the quality of color images

Citation: Cardone, B.; Di Martino, F.;

Sessa, S. Fuzzy Transform Image

Compression in the YUV Space.

Computation 2023, 11, 191. https://

doi.org/10.3390/computation11100191

Academic Editor: Xiaoqiang Hua

Received: 10 September 2023

Revised: 27 September 2023

Accepted: 29 September 2023

Published: 1 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/license

s/by/4.0/).

Computation 2023, 11, 191 2 of 19

coded and decoded via F-transform in the YUV space is better than the F-transform
method in the RGB space and comparable with the one obtained using JPEG.

A fractal image compression technique applied in the YUV space is proposed in [9];
the authors show that the quality of color images coded/decoded using this approach is
better than the one obtained applying the same method in the RGB space.

Furthermore, comparison tests between the RGB and YUV perception-oriented
properties in [10] show that compressed images in the YUV space provide better quality
than images compressed in the RGB spaces in a human–computer interaction and ma-
chine vision applications.

In [11] a technique using Chebyshev bit allocation is applied to compress images in
the YUV space: the results show that this method improves the visual quality of color
images compressed via JPEG by 42%. A color image compression method applying a
subsampling process to the two chroma channels and a modification algorithm to the Y
channel is applied to color images in [12] to improve JPEG performances.

An image compression method with a learning-base filter is applied in [13] on color
images constructing the filter in YUV space instead of RGB space: the authors show that
the quality of the coded images is better than that obtained using the filter in the RGB
space. In [14], an image lossy compression algorithm in which quantization and sub-
sampling are executed in the YUV space is applied for wireless capsule endoscopy: the
quality of the coded images is better than that obtained by executing quantization and
subsampling in the RGB space.

Recently, hybrid lossy color image compression methods based on Neural [15],
Fuzzy neural [16,17], Quantum Discrete Cosine Transform [18] and Adaptive Discrete
Wavelet Transform [19] have been proposed in the literature. These methods improve the
quality of the decoded images, and are robust to the presence of noise, but are computa-
tionally too expensive.

In particular, in [20], a wavelet-based color image compression method using
trained convolutional neural network in the lifting scheme is applied to the YUV exe-
cuting the trained CNN in the Y, U, V channels separately: this method improves the
quality of the coded images obtained using traditional wavelet-based color image com-
pression algorithms. However, the execution times are much higher than those adopted
by applying traditional color image compression algorithms.

In [21] an image reconstruction method performed on the YUV space is applied to
prevent data corruption when using adversarial perturbation of the image: the results
show that the image can be recovered on the YUV space without distortions and with
high visual quality.

In this paper, we propose a novel image compression algorithm in which the
bi-dimensional First-Degree F-transform algorithm (for shorts, F1-transform) [22,23] is
applied to code/decode color images in the YUV space.

The bi-dimensional F-transform was used recently by various researchers for image
and video coding. In [24], the bi-dimensional F-transform is applied to compress massive
images: the coded images are used as input images in an image segmentation algorithm.

In [25], an image monitoring model is proposed in which the bi-dimensional
F-transform is used to compress gray images.

A hybrid image compression algorithm, which combines the L1-norm and the
bi-dimensional F-transform, is proposed in [26]: results executed on a set of gray-level
noised images show that this method is more robust in the presence of noise than the
canonical F-transform image compression algorithm.

A generalization of the F-transform called high-order F-transform (Fm-transform),
has been proposed in [27] in order to reduce the approximation error of the original
function approximated with the inverse F-transform. In the Fm-transform, the compo-
nents of the direct high-order fuzzy transforms are polynomials of degree m, unlike the
components of the direct F-transform (labeled as F°-transform), where they were con-
stant values. The greater the degree of the polynomial, the smaller the error of the ap-

Computation 2023, 11, 191 3 of 19

proximation: however, as the degree of the polynomial increases, the computational
complexity of the algorithm increases.

In [18] the bi-dimensional first-order degree F-transform (F1-transform) is used to
compress images: the authors show that the quality of the coded/decoded images is bet-
ter than that obtained executing F-transform, with negligible augments of CPU time. The
critical point of this method, unlike the F-transform and JPEG methods, is that it does not
require the compressed image to be saved in the memory, but matrices of three coeffi-
cients of the same size related to the compressed image itself must be contained in a
memory three times greater than that necessary to archive the compressed image.

To solve this problem, we propose a new lossy color image compression algorithm
in which is executed the F1-transform algorithm to code/decode color images trans-
formed in the YUV space. The transformed image in each of the three channels is parti-
tioned into blocks and each block is compressed by the bi-dimensional direct
F1-transform, compressing the blocks of the chroma channels more. The image is sub-
sequently reconstructed by decomposing the single blocks with the use of the
bi-dimensional inverse F1-transform.

The main benefits of this method are as follows:
 The use of the bi-dimensional F1-transform represents a trade-off between the qual-

ity of the compressed image and the CPU times. It reduces the information loss ob-
tained by compressing the image with the same compression rate using the
F-transform algorithm with acceptable coding/decoding CPU time;

 The compression of the color images is carried out in the YUV space to guarantee a
high visual quality of the color images and solve the criticality of the F1-transform
color image compression method in the RGB space [18] having a larger memory to
allocate the information of the compressed image. In fact, by performing a high
compression of the two chrominance channels, the size of the matrices in which the
information of the compressed image is contained, is reduced in these two channels,
and this allows us to reduce the memory allocations and CPU times.
We compare our color lossy image compression method with the JPEG method and

with the image compression methods based on the bi-dimensional F-transform [7,8] and
F1-transform [22] on the RGB space and on the bi-dimensional F-transform in the YUV
space [6].

In the next Section, the concepts of F-transform and F1-transform are briefly pre-
sented, and the F-transform lossy color image compression method applied in YUV space
is shown as well. Our method is presented in Section 3. In Section 4, the comparative
results obtained in some datasets of color images are shown and discussed. Conclusive
discussions are contained in Section 5.

2. Preliminaries
2.1. The bi-Dimensional F-Transform

Let [a, b] be a closed real interval and let {x1, x2, …, xn} be a set of points of [a, b],
called nodes, such that x1 = a < x2 <…< xn = b.

Let {A1,…,An} be a family of fuzzy sets of X, where Ai: [a, b] → [0, 1]: it forms a fuzzy
partition of X id the following conditions hold:
(1) Ai(xi) = 1 for every i =1, 2, …, n;
(2) Ai(x) = 0 if x∉(xi − 1, xi + 1), by setting x0 = x1 = a and xn + 1 = xn = b;
(3) Ai(x) is a continuous function over [a, b];
(4) Ai(x) is strictly increasing over [xi − 1, xi] for each i = 2, …, n;
(5) Ai(x) is strictly decreasing over [xi, xi + 1] for each i = 1, …, n−1;
(6) ∑ 𝐴௜(𝑥) = 1௡௜ୀଵ for every x∈[a, b].

Let h = ୠିୟ୬ିଵ. The fuzzy partition {A1, …, An} is an uniform fuzzy partition if:

(7) n ≥ 3;

Computation 2023, 11, 191 4 of 19

(8) xi =a + h∙(i−1), for i = 1, 2, …, n;
(9) Ai(xi−x) = Ai(xi + x) for every x ∈ [0, h] and i = 2, …, n−1;
(10) Ai + 1(x) = Ai(x−h) for every x ∈ [xi, xi + 1] and i = 1, 2, …, n−1.

Let f(x) be a continuous function over [a, b] and {A1, A2, …, An} be a fuzzy partition
of [a, b]. The n-tuple F = [Fଵ, Fଶ, . . . , F୬] is called uni-dimensional direct F-transform of f with
respect to {A1, A2, …, An} if the following holds: F୧ = ׬ ୤(୶)୅౟(୶)ୢ୶ౘ౗׬ ୅౟(୶)ୢ୶ౘ౗ i = 1, 2, …, n (1)

The following function 𝑓ி,௡ defined for every x∈[a, b] as

𝑓ி,௡(x) = ෍ F୧୬
୧ୀଵ A୧(x) (2)

is called the uni-dimensional inverse F-transform of the function f.
The following theorem holds (cfr. [7, Theorem 2]):

Theorem 1. Let f(x) be a continuous function over [a, b]. For every ε > 0 there exists an integer
n(ε) and a fuzzy partition {A1, A2, …, An(ε)} of [a, b] for which holds the inequality ห𝑓(x) − 𝑓ி,௡(ఌ)(x)| < 𝜖 for every x ∈ [a, b].

Now, consider the discrete case where the function f is known in a set of N points P =
{p1, ..., pN}, where pj ∈ [a, b], j = 1, 2, …, m. The set {p1, ..., pN} is called sufficiently dense with
respect to the fixed fuzzy partition {A1, A2, …, An} if for i = 1, …, n, there exists at least an
index j∈{1, …, m} such that Ai(pj) > 0.

If the set P is sufficiently dense with respect to the fuzzy partition, we can define the
discrete direct F-transform with components given as F୧ = ∑ ௙(୮ౠ)୅౟(୮ౠ)ౠొసభ∑ ୅౟(୮ౠ)ౠొసభ i = 1, 2, …, n (3)

and the discrete inverse F-transform as 𝑓ி,௡(p௝) = ∑ F୧୬୧ୀଵ A୧(p௝) j = 1, …, N (4)

The following theorem applied to the discrete inverse F-transform holds (cfr. [7,
Theorem 5]):
Theorem 2. Let f(x) be a continuous function over [a, b] known in a discrete set of points P = {p1,
..., pm}. For every ε > 0, there exists an integer n(ε) and a fuzzy partition {A1, A2, …, An(ε)} of [a,
b], with respect to which P is sufficiently dense, for which the following inequality holds ห𝑓൫p௝൯ − 𝑓ி,௡(ఌ)൫p௝൯| < 𝜖 for j = 1, …, N.

According to Theorem 2, the inverse fuzzy transform (4) can be used to approximate
the function f in a point.

Now, we consider functions in two variables. Let x1, x2, …, xn be a set of n nodes in
[a,b] where n > 2 and x1 = a < x2 <…< xn = b, and let y1, y2, …, ym be a set of m nodes in [c,d],
where m > 2 and and y1 = c < y2 <…< ym = d. Moreover, let A1,…,An: [a, b] → [0, 1] be a
fuzzy partition of [a, b], B1, …, Bm: [c, d] → [0, 1] be a fuzzy partition of [c, d] and let f(x,y)
be a function defined in the Cartesian product [a, b] × [c, d].

We suppose that f assumes known values in a set of points (pj, qj)∈[a, b] × [c, d],
where i = 1, …, N and j = 1, …, m, where the set P = {p1, …, pN} is sufficiently dense with
respect to the fuzzy partition {A1, …, An} and the set Q = {q1, …, qM} is sufficiently dense
with respect to the fuzzy partition {B1, …, Bm}.

In this case, we can define the bi-dimensional discrete F-transform of f, given by matrix
[Fhk] with entries defined as Fhk = ∑ ∑ ௙(୮౟,୯ౠ)୅౞(୮౟)୆ౡ(୯ౠ)౟ొసభ౉ౠసభ∑ ∑ ୅౞(୮౟)୆ౡ(୯ౠ)౟ొసభ౉ౠసభ h = 1, 2, …, n, k = 1, 2, …, m (5)

Computation 2023, 11, 191 5 of 19

and the bi-dimensional discrete inverse F-transform of f with respect to {A1, A2, …, An} and
{B1, …, Bm} defined as 𝑓௡௠ி (p୧, q୨) = ∑ ∑ F୦୩୫୩ୀଵ A୦(p୧)୬୦ୀଵ B୩(q୨) i = 1, 2, …, N, j = 1, 2, …, M (6)

2.2. The bi-Dimensional F1-Transform
This paragraph introduces the concept of higher-degree fuzzy transform or

F1-transform.
Let Ah, h = 1, …, n, be the hth fuzzy set of the fuzzy partition {A1, …, An} defined in

[a, b] and L2([xh − 1,xh + 1]) be the Hilbert space of square-integrable functions f,g: [xh − 1,xh + 1] ⟶ R with the inner product:

⟨𝑓, 𝑔⟩௛ = ׬ 𝑓(x)𝑔(x)A୦(x)dx୶౞శభ୶౞షభ׬ A୦(x)dx୶౞శభ୶౞షభ (7)

Given a integer r ³ 0, we denote with 2
rL ([xh−1,xh+1]) a linear subspace of the Hilbert

space L2([xh−1,xh+1]) that has as an orthogonal basis the polynomials { 0
hP , 1

hP , …, r
hP }

constructed by applying the Gram–Schmidt ortho-normalization to the linear inde-
pendent system of polynomials {1, x, x2, …, xr} defined in the interval [xh−1,xh+1]. We have
the following:

൞P୦଴ = 1P୦ୱାଵ = xୱାଵ − ෍ ൻxୱାଵ, P୦୨ൿൻP୦୨ , P୦୨ൿୱ
୨ୀଵ s=1,...,r-1 (8)

The following Lemma holds (Cfr. 7, Lemma 1):
Lemma 1. Let 𝐹௞௥be the orthogonal projection of the function f on 2

rL ([xh−1,xh+1]). Then, 𝐹௛௥(𝑥) = ෍ 𝑐௛,௜𝑃௛௦(𝑥)௥
௦ୀଵ (9)

where

c୦,ୱ = ⟨f, P୩୦ୱ ⟩୩ൻP୦ୱ, P୦ୱൿ୦ = ׬ 𝑓(x) P୦ୱ(x)A୦(x)dx୶ౡశభ୶ౡషభ׬ (P୦ୱ(x))ଶA୦(x)dx୶ౡశభ୶ౡషభ (10)

F୦୰ it is the hth component of the direct Fr-transform of f. The inverse Fr-transform of
f in a point x ∊ [a, b] is defined as

𝑓୊,୬୰ (x) = ෍ F୦୰ A୩(x)୬
୩ୀଵ (11)

For r = 0, we have 0
hP = 1 and the F0-transform is given by the F-transform in one

variable (0
hF (x) = ch,0).

For r = 1, we have 1
hP = (x − xh) and the hth component of the F1-transform is given

as

1
hF (x) = ch,0 + ch,1 (x − xh) = 0

hF (x) + ch,1 (x − xh) (12)

If the function f is known in a set of N points, P = {p1, …, pN}, ch,0 and ch,1 can be dis-
cretized in the following formulas: c୦,଴ = ∑ 𝑓(p୧)A୦(p୧)୬୧ୀଵ∑ A୦(p୧)୬୧ୀଵ (13)

Computation 2023, 11, 191 6 of 19

c୦,ଵ = ∑ 𝑓(p୧)(p୧ − x୦)A୦(p୧)୬୧ୀଵ∑ A୦(p୧)୬୧ୀଵ (p୧ − x୦)ଶ (14)

The F1-transform can be extended in a bi-dimensional space. We consider the Hil-
bert space L2([xh−1, xh+1] × [yk−1, yk+1]) of square-integrable functions f: [xh − 1, xh + 1] × [yk − 1,yk +

1]→ R with the weighted inner product:

⟨𝑓, 𝑔⟩௛௞ = න න 𝑓(𝑥, 𝑦)𝑔(x, y)A୦(x)B୩(y)dxdy୷ౡశభ
୷ౡషభ

୶౞శభ
୶೓షభ (15)

Two functions 𝑓, 𝑔 ∈ L2 ([xh−1, xh+1] × [yk−1, yk+1]) are orthogonal if ⟨𝑓, 𝑔⟩௛௞ = 0.
Let f: X ⊆ R2 → Y⊆ R be a continuous bi-dimensional function defined in [a, b] × [c,

d]. Let {A1, A2, …, An} be a fuzzy partition of [a, b] and {B1, B2, …, Bm} be a fuzzy partition
of [c, d]. Moreover, let {(p1,q1),…, (pN,qjN)} a set of N points in which the function f is
known, where (pj,qj)∈ [a, b] × [c, d]. Let P = {p1, …, pN} be sufficiently dense with respect
to the fuzzy partition {A1, …, An} and Q = {q1, …, qM} be sufficiently dense with respect to
the fuzzy partition {B1, …, Bm}.

We can define the bi-dimensional direct F1-transform of f, with components given as F୦୩ଵ (x, y) = c୦୩଴଴ + chk10(x − x୦) + chk01(y − y୩) (16)

where c௛௞଴଴ is the component F௛௞ of the bi-dimensional discrete direct F transform of f,
defined via Formula (5). The three coefficients in (17) are given as

c୦୩଴଴ = F୦୩ = ∑ 𝑓(p୨, q୨) ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ ∑ A୦(p୨) ⋅ B୩(q୨)ே௝ୀଵ (17)

c୦୩ଵ଴ = ∑ 𝑓(p୨, q୨) ⋅ ൫p୨ − x୦൯ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ∑ ൫p୨ − x୦൯ଶ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ (18)

c୦୩଴ଵ = ∑ 𝑓(p୨, q୨) ⋅ ൫q୨ − y୩൯ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ∑ ൫q୨ − y୩൯ଶ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ (19)

The inverse F1-transform of f in a point (x,y) ∊ [a, b] × [c, d] is defined as 𝑓୊,୬ଵ (x, y) = ∑ ∑ F୦,୩ଵ A୦(x)B୩(y)௠௞ୀଵ௡௛ୀଵ , (20)

where F୦,୩ଵ (x, y) is the (h,k)th component of the bi-dimensional direct F1-transform given
from Formula (16).

2.3. Coding/Decoding Images using the Bidimensional F and F1-Transforms
Let I be a gray N × M image. A pixel can be considered a data point with coordinates

(i,j), where i = 1, 2, …, N and j = 1, 2, …, M: the value of this data point is given as the pixel
value I(i,j). In [8], the image is normalized in [0, 1] according to the formula R(i,j) =
I(i,j)/(L-1), where L is the number of gray levels.

We can create a partition of this image in blocks of equal size N(B) × M(B), coded to a
block FB of sizes n(B) × m(B), with n(B) << N(B) and m(B) << M(B), using the
bi-dimensional direct F-transform.

Let {A1, …, An(B)} be a fuzzy partition of the set [1,N(B)] and let {B1,…,Bm(B)} be a fuzzy
partition of the set [1,M(B))]. Each block is compressed by the bi-dimensional direct
F-transform:

F୦୩୆ = ∑ ∑ R(i, j)A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ ∑ A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ (21)

The coded image is reconstructed by merging all compressed blocks. Each block is
decompressed using the bi-dimensional inverse F-transform. The pixel value I(i,j) in the
block is approximated with the following value:

Computation 2023, 11, 191 7 of 19

𝑓௡ಳ௠ಳிಳ (i, j) = ෍ ෍ F୦୩୆୫(୆)
୩ୀଵ A୦(i)୬(୆)

୦ୀଵ B୩(j) (22)

The decoded image is reconstructed by merging the decompressed blocks. The
F-transform compression and decompression algorithms are shown in the pseudocode as
Algorithms 1 and 2, respectively.

Algorithm 1. F1-transform image compression
 Input: N × M Image I with L grey levels
 Size of the blocks of the source image N(B) × M(B)
 Size of the compressed blocks n(B) × m(B)
 Output: n × m compressed image IC

1. Normalize the source image I in [0, 1]
2. Partition the source image in blocks of size N(B) × M(B)
3. For each block
4. For h = 1 to n(B)
5. For k = 1 to m(B)
6. Compute the (hk)th component of the bidimensional direct F-transform by (21)
7. Next k
8. Next h
9. Next block
10. Merge the compressed blocks
11. De-normalize the image
12. Return the compressed n × m image IC

Algorithm 2. F-transform image decompression
 Input: n × m compressed image Ic
 Output: N × M decoded image ID

1. Normalize the compressed image in [0, 1]
2. Partition the compressed image Ic in blocks of size n(B) × m(B)
3. For each compressed block
4. For i = 1 to N(B)
5. For j = 1 to M(B)
6. Compute the (i,j)th pixel of the decoded block by the bidimensional inverse F-transform (22)
7. Next j
8. Next i
9. Next compressed block
10. Merge the decompressed blocks
11. De-normalize the decompressed image
12. Return the decompressed N × M image ID

In [22] an improvement in the quality of the decompressed image is accomplished
using the bi-dimensional F1-transform. The blocks are compressed by using the
bi-dimensional direct F1-transform: F୦୩ଵ୆ = c୦୩଴଴ + chk10(i − h) + chk01(j − k) (23)

where

c୦୩଴଴ = F୦୩୆ = ∑ ∑ R(i, j)A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ ∑ A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ (24)

Computation 2023, 11, 191 8 of 19

c୦୩ଵ଴ == ∑ ∑ 𝐼(i, j)|𝑖 − 𝑗|A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ A୦(i)(i − h)ଶ୒(୆)୧ୀଵ ∑ B୩(j)୑(୆)୨ୀଵ (25)

c୦୩଴ଵ == ∑ ∑ 𝐼(i, j)|𝑗 − 𝑘|A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ B୩(j)(j − k)ଶ୑(୆)୨ୀଵ ∑ A୦(i)୒(୆)୧ୀଵ (26)

The three coefficients c଴଴, cଵ଴ and c଴ଵ are constructed by merging the coefficients
of each block and finally stored, forming the output of coding process.

During the decompression process, the image is reconstructed by decompressing the
block with the following bi-dimensional inverse F1-transform:

𝑓௡ಳ௠ಳଵிಳ (i, j) = ෍ ෍ F୦୩୆୫(୆)
୩ୀଵ A୦(i)୬(୆)

୦ୀଵ B୩(j) (27)

where the bi-dimensional direct F1-transform of the block F୦୩୆ is calculated using (23).
The decompressed blocks are merged to form the decompressed image. The

F1-transform compression and decompression algorithms are shown in the pseudocode
as Algorithms 3 and 4, respectively.

Algorithm 3. F1-transform image compression
 Input: N × M Image I with L grey levels
 Size of the blocks of the source image N(B) × M(B)
 Size of the compressed blocks n(B) × m(B)
 Output: n × m matrices of the direct F1-transform coefficients c଴଴, cଵ଴ and c଴ଵ

1. Normalize the source image I in [0, 1]
2. Partition the source image in blocks of size N(B) × M(B)
3. For each block
4. For h = 1 to n(B)
5. For k = 1 to m(B)
6. Compute the component c୦୩଴଴ by (24)
7. Compute the component c୦୩ଵ଴ by (25)
8. Compute the component c୦୩଴ଵ by (26)
9. Compute the (hk)th component of the bidimensional direct F1-transform by (26)
10. Next k
11. Next h
12. Next block
13. Merge the compressed blocks to obtain the n×m matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ
14. Return the compressed n×m matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ

Algorithm 4. F1-transform image decompression
 Input: n × m matrices of the direct F1-transform coefficients coefficients c଴଴, cଵ଴ and c଴ଵ
 Size of the blocks of the decoded image N(B) × M(B)
 Size of the blocks of the coded image n(B) × m(B)
 Output: N × M decoded image ID

1. Partition the F1-transform coefficients c଴଴, cଵ଴ and c଴ଵin blocks of size n(B) × m(B)
2. For each compressed block
3. For i = 1 to N(B)
4. For j = 1 to M(B)
5. Compute the (i,j)th pixel of the decoded block by the bidimensional inverse F1-transform (27)
6. Next j
7. Next i
8. Next compressed block

Computation 2023, 11, 191 9 of 19

9. Merge the decompressed blocks
10. De-normalize the decompressed image
11. Return the decompressed N × M image ID

3. The YUV-Based F1-Transform Color Image Compression Method
Let I be a N × M color image into L gray levels. All pixel values in bands R, G and B

are normalized in [0, 1].
Considering a 256 gray levels color image and the scaled and offset version of the

YUV color space, the source image is transformed in the YUV space via the formula (cfr.
[28]):

൥YUV൩ = ൥ 0.299 0.587 0.114−0.169 −0.332 0.5000.500 −0.419 −0.813൩ ൥RGB൩ + ൥16128128൩ (28)

Then, the F1-transform image compression algorithm is executed separately to the
three normalized images Y, U and V, using a strong compression for the chroma images
U and V.

If N(B) and M(B) are the sizes of each block in the three channels, the blocks in the
brightness channel are compressed with a compression rate ϱଢ଼ = ௡ೊ(୆)ൈ௠ೊ(୆)୒(୆)ൈ୑(୆) and the blocks in the two chroma channels are compressed with a compression rate ϱ୙୚ =௡ೆೇ(୆)ൈ௠ೆೇ(୆)୒(୆)ൈ୑(୆) , where nUV(B) << nY(B) and mUV(B) << mY(B), so that ρUV << ρY.

The F1-transform image compression algorithm will store in output for each channel
the three matrixes of the coefficients of the bi-dimensional direct F1-transform: c଴଴ , cଵ଴ and c଴ଵ. The size of the three matrices in the brightness channel is ρY (N × M) and the
size of the three matrices in each of the two chroma channels is ρUV (N × M).

By choosing suitable brightness and chroma compression rates, it is possible to re-
duce the memory capacity necessary to store the direct F1-transform coefficients in the
RGB space.

For example, suppose we execute the F1-transform image compression algorithm in
the RGB space to compress a 256 × 256 color image by partitioning the image into 16 × 16
blocks compressed into 4 × 4 blocks. The compression rate will be ρRGB = 0.0625 and the
size of the matrix of each coefficient is 64 × 64. Executing the F1-transform algorithm in
the YUV space and compressing the 16 × 16 blocks in the two chroma channels into 2 × 2
blocks (ρUV = 0.016) and the 16 × 16 blocks in the brightness channel into 8 × 8 blocks (ρY =
0.25), the size of the matrix of each coefficient in the U and V channels will be 32 × 32, and
the size of the matrix of each coefficient in the Y channel will be 128 × 128. By carrying out
the compression of the source image in the YUV space in this way, two advantages are
obtained in terms of visual quality of the reconstructed image and in terms of the availa-
ble memory necessary to archive the coefficients of the direct F1-transforms in the three
channels.

Below, the YUV F1-transform color image compression algorithm (Algorithm 5) is
shown as pseudocode.

Algorithm 5. YUV F1-transform color image compression
 Input: N × M color image I with L grey levels
 Size of the blocks of the source image N(B) × M(B)
 Size of the compressed blocks in the Y channel nY(B) × mY(B)
 Size of the compressed blocks in the U and V channels nUV(B) × mUV(B)
 Output: n × m matrices of thedirect F1-transform coefficients c଴଴, cଵ଴ and c଴ଵ in the

Y, U and channels
1. Extract the single band images IR, IG and IB
2. Transform the RGB images IR, IG and IB in the YUV images IY, IU and IV by (28)
3. Execute F1-transform image compression (IY, N(B), M(B), nY(B), mY(B)) //compress IY
4. Execute F1-transform image compression (IU, N(B), M(B), nUV(B), mUV(B)) //compress IU

Computation 2023, 11, 191 10 of 19

5. Execute F1-transform image compression (IV, N(B), M(B), nUV(B), mUV(B)) //compress IV
6. Return the compressed matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ in the bands Y, U and V

In Figure 1 we give the flow diagram of the YUV F1-transform image compression
algorithm.

Figure 1. Flow diagram of the YUV F1-transform image compression algorithm.

The decompression process is performed by executing the F1-transform image de-
compression algorithm in the brightness and chroma channels; to decompress the image,
the F1-transform image decompression algorithm is executed separately for each of the
channels Y, U and V, assigning as input the three coefficient matrices of the direct
F1-transform and the dimensions of the original and compressed blocks.

Then, the three decoded images IDY, IDU, and IDV are transformed in the RGB space,
according to the formula [28]:

൥𝑅𝐺𝐵൩ = ൥1.164 0 1.5961.164 −0.813 −0.3921.164 2.017 0 ൩ ൥𝑌 − 16𝑈 − 128𝑉 − 128൩ (29)

Finally, the decoded image in the RGB band (IDR, IDG, IDB) is returned as well. Below,
the YUV F1-transform color image decompression algorithm (Algorithm 6) is shown as
pseudocode.

Algorithm 6. YUV F1-transform image decompression
 Input: n × m matrices of the direct F1-transform coefficients coefficients c଴଴, cଵ଴ and c଴ଵ in the Y, U and V channels
 Size of the blocks of the decoded image N(B) × M(B)

 Size of the compressed blocks in the Y channel nY(B) × mY(B)
 Size of the compressed blocks in the U and V channels nUV(B) × mUV(B)

Computation 2023, 11, 191 11 of 19

 Output: N×M decoded image ID
1. c଴଴, cଵ଴ and c଴ଵin blocks of size nY(B) × mY(B)
2. IDY = F1-transform image decompression (c௒଴଴, c௒ଵ଴, c௒଴ଵ, N(B), M(B), nY(B), mY(B)) //Y ch. decomp.
3. IDU = F1-transform image decompression (c୙଴଴, c୙ଵ଴, c୙଴ଵ, N(B), M(B), nUV(B), mUV(B)) //U ch. decomp.
4. IDV = F1-transform image decompression (c௏଴଴, c୚ଵ଴, c୚଴ଵ, N(B), M(B), nUV(B), mUV(B)) //V ch. decomp.
5. Transform the YUV images IDY, IDU and IDV in the RGB images IDR, IDG and IDB by (29)
6. Return the decompressed N × M color image in the RGB space (IDR, IDG and IDB)

In Figure 2 the flow diagram of the YUV F1-transform image decompression algo-
rithm is schematized as well.

Figure 2. Flow diagram of the YUV F1-transform image decompression algorithm.

We compare our lossy color image compression report with the JPEG algorithm [1,2]
and the color image compression methods based on F-transform on the YUV space [6]
and F1-transform on the RGB space [22].

The Peak-Signal-to-Noise index (PSNR) is used to measure the quality of the de-
coded images. In order to measure the gain obtained executing the YUV F1-transform
algorithm with respect to another color image compression method, we measure the
PSNR gain, expressed in a percentage and given as follows: Gain(YUV 𝐹ଵ − transform) = [(PSNR YUV 𝐹ଵ − transform) - (PSNR other method)] ⋅ 100(PSNR other method) (30)

In the next Section, the results applied to the color image dataset are shown and
discussed.

Computation 2023, 11, 191 12 of 19

4. Results
We test the YUV F1-transform lossy color image compression algorithm on the color

image dataset provided by the University of Southern California Signal and Image Pro-
cessing Institute (USC SIPI) and published on the website http://sipi.usc.edu/database.

The dataset is made up of over 50 color images of different sizes. For brevity, we
show in detail the results obtained for 256 × 256 source images 4.1.04 and the 412 × 512
source image 4.2.07 shown in Figure 3.

Each image was compressed and decompressed by performing JPEG [2], YUV
F-transform [6], F1-transform [22] and YUV F1-transform lossy image compression algo-
rithms.

(a) (b)

Figure 3. Source images: (a) 256 × 256 image 4.1.04; (b): 512 × 512 image 4.2.07.

We compare the four image compression methods measuring the quality of the re-
constructed image as the compression rate changes assuming various values. The com-
pression rate used when executing YUV F-transform and YUV F1-transform is the mean
compression rate set for each channel Y, U and V.

In Figure 4 we show, for the original image 4.1.04, the decoded images obtained by
executing the four algorithms setting a compression rate ρ ≈ 0.10.

(a) (b)

Computation 2023, 11, 191 13 of 19

(c) (d)

Figure 4. Decoded image 4.1.04, ρ ≈ 0.10, obtained via: (a) JPEG; (b) F1-transform; (c):YUV
F-transform; (d) YUV F1-transform.

Figure 5 shows, for the original image 4.1.04, the decoded images obtained by exe-
cuting the four algorithms setting a compression rate ρ ≈ 0.25.

(a) (b)

(c) (d)

Figure 5. Decoded image 4.1.04, ρ ≈ 0.25, obtained via: (a) JPEG; (b) F1-transform; (c):YUV
F-transform; (d) YUV F1-transform.

Figure 6 shows the trend of the PSNR index obtained by varying the compression
rate. The trends obtained by executing JPEG and F1-transform are similar. However, for
strong compressions (ρ < 0.1), the PSNR value calculated by executing JPEG decreases
exponentially as the compression increases: this result shows that the quality of the de-
coded image obtained using JPEG drops quickly for very high compressions. The highest
PSNR values are obtained by performing YUV F-transform and YUV F1-transform. In
particular, the PSNR values obtained with the two methods are similar for ρ < 0.2, while,
for lower compressions, YUV F1-transform provides decompressed images of better
quality than those obtained with YUV F-transform.

Computation 2023, 11, 191 14 of 19

Figure 6. PSNR trend for the color image 4.1.04 obtained by executing the four color image com-
pressions algorithms.

Table 1 shows the gain index values obtained for different compression rates.

Table 1. Gain index of YUV F1-transform for the color image 4.1.04.

ρ JPEG F1trRGB FtrYUV
0.44 2.85% 2.42% 1.54%
0.30 4.47% 4.03% 1.95%
0.20 2.11% 1.16% 0.41%
0.14 2.19% 1.28% 0.35%
0.06 2.13% 1.55% 0.76%
0.03 4.45% 2.20% 1.15%

The gain of YUV-F1-transform compared to JPEG is always greater than 2%, re-
gardless of the compression rate; similarly, the gain of YUV-F1-transform compared to
F1-transform in the RGB space is greater than 1% regardless of the compression rate. The
gain of YUV-F1-transform compared to YUV-F-transform is always positive and reaches
values greater than 1% for strong (ρ < 0.05) and weak compressions (ρ > 025).

Now, we show the results obtained for the color image 4.2.07. In Figure 7, we show
the decoded images obtained by executing the four algorithms via a compression rate ρ ≈
0.10.

(a) (b)

Computation 2023, 11, 191 15 of 19

(c) (d)

Figure 7. Decoded image 4.2.07, ρ ≈ 0.10, obtained via: (a) JPEG; (b) F1-transform; (c):YUV
F-transform; (d) YUV F1-transform.

Figure 8 shows the decoded images of 4.2.07 obtained by executing the four algo-
rithms setting a compression rate ρ ≈ 0.25.

(a) (b)

(c) (d)

Figure 8. Decoded image 4.2.07, ρ ≈ 0.25, obtained via: (a) JPEG; (b) F1-transform; (c):YUV
F-transform; (d) YUV F1-transform.

In Figure 9, the trend of the PSNR index is plotted obtained by varying the com-
pression rate. The best values of PSNR are obtained by executing YUV F1-transform. The
trend of the PSNR obtained by executing the YUV F-transform is better than the one ob-
tained by executing F-transform and JPEG. As the results obtained for the color image
4.1.04 show, the trend of PSNR obtained by executing JPEG for the image 4.2.07 decays
rapidly as compression increases (ρ < 0.1).

Computation 2023, 11, 191 16 of 19

Figure 9. PSNR trend for the color image 4.2.07 obtained by executing the four color image com-
pression algorithms.

Table 2 shows the gain index values obtained for different compression rates.

Table 2. Gain index of YUV F1-transform for the color image 4.2.07.

ρ JPEG F1trRGB FtrYUV
0.44 3.62% 2.83% 1.64%
0.30 5.27% 2.91% 1.47%
0.20 3.47% 2.56% 1.62%
0.14 5.26% 4.33% 2.03%
0.06 5.10% 4.03% 1.89%
0.03 6.88% 4.05% 2.76%

The gain of YUV-F1-transform compared to JPEG is always greater than 3%, re-
gardless of the compression rate: it reaches values above 6% for strong compressions (ρ <
0.04). The gain of YUV-F1-transform compared to F1-transform in the RGB space is
greater than 2% regardless of the compression rate: it reaches values above 4% for ρ <
0.15. The gain of YUV-F1-transform compared to YUV-F-transform is always greater than
1%: it reaches values above 2% for strong compressions (ρ < 0.05). In Figure 10, the trends
of the gain of the YUV F1-transform algorithm are plotted with respect to the other three
color image compression algorithms, where the Gain index is calculated using formula
(30) and is averaged for all the images of the dataset used in the comparative tests. The
gain of the proposed method with respect to YUV F-transform is approximately equal to
2%, regardless of the compression rate. The gain of YUV F1-transform varies from 3% for
small compressions and to 4% for high compressions (ρ < 0.2). The gain of YUV
F1-transform with respect to JPEG varies from 3% for small compressions to 5% for me-
dium–high compressions (0.1 < ρ < 0.2). For compression rates lower than 0.1, the Gain
index increases quickly as the compression rate reaches about 7%.

Computation 2023, 11, 191 17 of 19

Figure 10. Trend of the Gain of YUV-F1transform with respect to the other three color image com-
pression methods.

These results show that the quality of the images coded/decoded using the
YUV-F1-transform is higher than that obtained using YUV-F-transform, F1-transform
and JPEG, regardless of the compression rate.

Finally, in Table 3, we show the mean gain and the coding/decoding CPU time ob-
tained by executing the four color image compression algorithms: in order to compare
the quality of the decoded images and the CPU times with recent image compression
methods, the tests are also executed with respect to the CNN-based YUV color image
compression method [20]. The average values refer to gain and CPU times measured for
all images of the same size and for all compression rates.

Table 3. Mean gain and coding/decoding CPU time obtained for the 256 × 256 and 512 × 512 images
executing the four image compression algorithms.

CPU time JPEG [2] F1trRGB [22] FtrYUV [6] CNN-YUV
[20] F1-tr.YUV

Gain
256 × 256 4.45 3.49 1.87 −0.30
512 × 512 4.68 3.60 1.98 −0.36

Coding CPU
time

256 × 256 2.76 2.78 2.41 7.23 3.09
512 × 512 5.75 5.88 5.66 16.78 6.01

Decoding
CPU time

256 × 256 5.82 5.86 5.04 6.39 5.73
512 × 512 9.52 9.85 9.12 15.65 9.56

From the results in Table 3, we deduce the following:
- The quality of the decoded images obtained using our method is comparable with

those obtained by executing the wavelet-like CNN-based YUV image compression
method and better than the ones obtained by executing JPEG, F1-transform and
YUV-F-transform, regardless of the image size;

- Both the coding/decoding CPU times measured by executing the YUV- F1-transform
are comparable with those obtained via JPEG, F1-transform and YUV-F-transform.

5. Conclusions
A lossy color image compression process employing the bi-dimensional

F1-transform in YUV space is proposed. The benefit of this approach is that it improves
the quality of the reconstructed image, with acceptable CPU coding/decoding times. In
fact, the F1-transform method retains more information from the original image than

Computation 2023, 11, 191 18 of 19

other image compression methods, but at the expense of a greater amount of allocated
memory space and longer execution times. The proposed method, operating in the YUV
space, allows us to obtain a high-quality decompressed image without increasing the al-
located memory and the CPU times. The results show that this method improves the
quality of the decompressed image compared to that obtained with the use of JPEG, the
F-transform applied in YUV space and the F1-transform applied in RGB space; moreover,
the execution times are compatible with those obtained by executing the other three color
image compression methods. Comparisons with the CNN-based wavelet-like color im-
age compression method [20] show that the proposed method provides decoded images
of comparable quality to those obtained with this wavelet-like method, but with much
shorter execution times.

In the future, we intend to adapt the YUV-F1-transform algorithm to the compres-
sion of large color images. Furthermore, we intend to extend the proposed method in
order to optimize the lossy compression of multi-band images.

Author Contributions: Conceptualization, B.C., F.D.M. and S.S.; methodology, B.C., F.D.M. and
S.S.; software, B.C., F.D.M. and S.S.; validation, B.C., F.D.M. and S.S.; formal analysis, B.C., F.D.M.
and S.S.; investigation, B.C., F.D.M. and S.S.; resources, B.C., F.D.M. and S.S.; data curation, B.C.,
F.D.M. and S.S.; writing—original draft preparation, B.C., F.D.M. and S.S.; writing—review and
editing, B.C., F.D.M. and S.S.; visualization, B.C., F.D.M. and S.S.; supervision, B.C., F.D.M. and S.S.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sharing not applicable

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wallace, G. The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 1992, 38, xviii–xxxiv.

https://doi.org/10.1109/30.125072.
2. Raid, A.M.; Khedr, W.M.; El-Dosuky, M.A.; Ahmed, W. Jpeg image compression using discrete cosine transform—A survey.

Int. J. Comput. Sci. Eng. Surv. (IJCSES) 2014, 5, 39–47. https://doi.org/10.5121/ijcses.2014.5204.
3. Mostafa, A.; Wahid, K.; Ko, S.B. An efficient YUV-based image compression algorithm for Wireless Capsule Endoscopy. In

Proceedings of the IEEE CCECE 2011, 24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara
Falls, ON, Canada; 8-11 May 2011, pp. 943–946. https://doi.org/10.1109/CCECE.2011.6030598

4. Nobuhara, H.; Pedrycz, W.; Hirota, K. Fuzzy Relational Compression: An Optimization by Different Color Spaces. In Pro-
ceedings of the Joint 1st International Conference on Soft Computing and Intelligent Systems and 3rd International Symposium
on Advanced Intelligent Systems (SCIS & ISIS 2002) (CD-Proceedings), 24B5-6, Tsukuba, Japan, 21–25 October 2002; p. 6.

5. Nobuhara, H.; Pedrycz, W.; Hirota, K. Relational image compression: Optimizations through the design of fuzzy coders and
YUV color space. Soft Comput. 2005, 9, 471–479. https://doi.org/10.1007/s0050000403667.

6. Di Martino, F.; Loia, V.; Sessa, S. Direct and inverse fuzzy transforms for coding/decoding color images in YUV space. J. Un-
certain Syst. 2009, 3, 11–30.

7. Perfilieva, I. Fuzzy Transform: Theory and Application. Fuzzy Sets Syst. 2006, 157, 993–1023.
https://doi.org/10.1016/j.fss.2005.11.012.

8. Di Martino, F.; Loia, V.; Perfilieva, I.; Sessa, S. An Image coding/decoding method based on direct and inverse fuzzy transforms.
Int. J. Approx. Reason. 2008, 48, 110–131. https://doi.org/10.1016/j.ijar.2007.06.008.

9. Son, T.N.; Hoang, T.M.; Dzung, N.T.; Giang, N.H. Fast FPGA implementation of YUV-based fractal image compression. In
Proceedings of the 2014 IEEE Fifth International Conference on Communications and Electronics (ICCE), Danang, Vietnam, 30
July–1 August 2014; pp. 440–445. https://doi.org/10.1109/CCE.2014.6916745.

10. Podpora, M.; Korbas, G.P.; Kawala-Janik, A. YUV vs. RGB—Choosing a color space for human-machine interaction. In Pro-
ceedings of the 2014 Federated Conference on Computer Science and Information Systems, Warsaw, Poland, 29 September
2014; Volume 3; pp. 29–34. https://doi.org/10.15439/2014F206.

11. Ernawan, F.; Kabir, N.; Zamli, K.Z. An efficient image compression technique using Tchebichef bit allocation. Optik 2017, 148,
106–119.

12. Zhu, S.; Cui, C.; Xiong, R.; Guo, U.; Zeng, B. Efficient chroma sub-sampling and luma modification for color image compression.
IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 1559–1563. https://doi.org/10.1109/TCSVT.2019.2895840.

Computation 2023, 11, 191 19 of 19

13. Sun, H.; Liu, C.; Katto, J.; Fan, Y. An image compression framework with learning-based filter. In Proceedings of the 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 14-19 June 2020. Seattle, WA, USA;
pp. 152–153.

14. Malathkar, N.V.; Soni, S.K. High compression efficiency image compression algorithm based on subsampling for capsule en-
doscopy. Multimed. Tools Appl. 2021, 80, 22163–22175. https://doi.org/10.1007/s11042-021-10808-0.

15. Prativadibhayankaram, S.; Richter, T.; Sparenberg, H.; Fößel, S. Color learning for image compression. arXiv 2023,
https://doi.org/10.48550/arXiv.2306.17460.

16. Chen, S.; Zhang, J.; Zhang, T. Fuzzy image processing based on deep learning: A survey. In The International Conference on Image,
Vision and Intelligent Systems (ICIVIS 2021); Yao, J., Xiao, Y., You, P., Sun, G., Eds.; Lecture Notes in Electrical Engineering;
Springer: Singapore, 2022; Volume 813, pp. 111–120. https://doi.org/10.1007/978-981-16-6963-7_10.

17. Wu, Y.; Li, X.; Zhang, Z.; Jin, X.; Chen, Z. Learned block-based hybrid image compression. IEEE Trans. Circuits Syst. Video
Technol. 2022, 32, 3978–3990. https://doi.org/10.1109/TCSVT.2021.3119660.

18. Anju, M.I.; Mohan, J.; DWT lifting scheme for image compression with cordic-enhanced operation. Int. J. Pattern Recognit. Artif.
Intell. 2022, 36, 2254006. https://doi.org/10.1142/S0218001422540064.

19. Pang, H.-Y.; Zhou, R.-G.; Hu, B.-Q.; Hu, W.W.; El-Rafei, A. Signal and image compression using quantum discrete cosine
transform. Inf. Sci. 2019, 473, 121–141. https://doi.org/10.1016/j.ins.2018.08.067.

20. Ma, H.; Liu, D.; Yan, N.; Li, H.; Wu, F. End-to-End optimized versatile image compression with wavelet-like transform. IEEE
Trans. Pattern Anal. Mach. Intell. 2022, 44, 1247–1263. https://doi.org/10.1109/TPAMI.2020.3026003.

21. Yin, Z.; Chen, L.; Lyu, W.; Luo, B. Reversible attack based on adversarial perturbation and reversible data hiding in YUV col-
orspace. Pattern Recognit. Lett. 2023, 166, 1–7. https://doi.org/10.1016/j.patrec.2022.12.018.

22. Di Martino, F.; Sessa, S.; Perfilieva, I. First order fuzzy transform for images compression. J. Signal Inf. Process. 2017, 8, 178–194.
https://doi.org/10.4236/jsip.2017.83012.

23. Di Martino, F.; Sessa, S. Fuzzy Transforms for Image Processing and Data Analysis—Core Concepts, Processes and Applications;
Springer Nature: Cham, Switzerland, 2020; p. 217. https://doi.org/10.1007/9783030446130.

24. Cardone, B.; Di Martino, F. Bit reduced fcm with block fuzzy transforms for massive image segmentation. Information 2020, 11,
351. https://doi.org/10.3390/info11070351.

25. Seifi, S.; Noorossana, R. An integrated statistical process monitoring and fuzzy transformation approach to improve process
performance via image data. Arab. J. Sci. Eng. 2023, Published Online: 13 June 2023, 16 pp, .
https://doi.org/10.1007/s13369023080592.

26. Min, H.J.; Jung, H.Y. A study of least absolute deviation fuzzy transform. Int. J. Fuzzy Syst. 2023, 11, 11 pp.,
https://doi.org/10.1007/s40815-023-01538-6.

27. Perfilieva, I.; Dankova, M.; Bede, B. Towards a higher degree F-transform. Fuzzy Sets Syst. 2011, 180, 3–19.
https://doi.org/10.1016/j.fss.2010.11.002.

28. ISO/IEC 10918-1:1994; Information Technology—Digital Compression and Coding of Continuous-Tone Still Images: Require-
ments and Guidelines. ISO: Geneva, Switzerland, 1994; p. 182.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury
to people or property resulting from any ideas, methods, instructions or products referred to in the content.

