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Abstract: This research proposes a new image compression method based on the F1-transform 
which improves the quality of the reconstructed image without increasing the coding/decoding 
CPU time. The advantage of compressing color images in the YUV space is due to the fact that 
while the three bands Red, Green and Blue are equally perceived by the human eye, in YUV space 
most of the image information perceived by the human eye is contained in the Y band, as opposed 
to the U and V bands. Using this advantage, we construct a new color image compression algo-
rithm based on F1-transform in which the image compression is accomplished in the YUV space, so 
that better-quality compressed images can be obtained without increasing the execution time. The 
results of tests performed on a set of color images show that our color image compression method 
improves the quality of the decoded images with respect to the image compression algorithms 
JPEG, F1-transform on the RGB color space and F-transform on the YUV color space, regardless of 
the selected compression rate and with comparable CPU times. 
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1. Introduction 
YUV is a color model used in the NTSC, PAL, and SECAM color encoding systems, 

which describes the color space in terms of a brightness component (the Y band called 
luma) and the two chrominance components (the U and V bands are called chroma). 

The YUV model has been used in image processing: its main advantage is that un-
like of the Red, Green and Blue (RGB) bands, perceived by the human eye, in YUV space, 
most of the color image information is contained in the Y band, as opposed to the U and 
V bands. The main application of the YUV model in image processing is related to the 
lossy compression of images, which can be performed mainly in the U and V bands, with 
slight loss of information. 

YUV is used in the JPEG color image compression method [1,2] where the Discrete 
Cosine Transform (DCT) algorithm is executed on the YUV space, sub-sampling and 
reducing the UV channels in a dynamic range in order to balance the reduction in data 
and the feel of human eyes. In [3], the DCT algorithm is executed in the YUV space for 
wireless capsule endoscopy application: the results show that the quality of the recon-
structed images is better than that obtained by applying the DCT image compression 
method in the RGB space. 

Many authors proposed image compression and reconstruction algorithms applied 
on the YUV space in order to improve the quality of the reconstructed images. 

In [4,5] an image compression algorithm based on fuzzy relation equations is ap-
plied in the YUV space to compress color images: the image is divided into blocks of 
equal sizes, coding the blocks in the UV channels more strongly than blocks in the Y 
band. In [6,7], the Fuzzy Transform technique (for short F-transform) [8] is applied to 
coding color images in the YUV space: the authors show that the quality of color images 
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coded and decoded via F-transform in the YUV space is better than the F-transform 
method in the RGB space and comparable with the one obtained using JPEG. 

A fractal image compression technique applied in the YUV space is proposed in [9]; 
the authors show that the quality of color images coded/decoded using this approach is 
better than the one obtained applying the same method in the RGB space. 

Furthermore, comparison tests between the RGB and YUV perception-oriented 
properties in [10] show that compressed images in the YUV space provide better quality 
than images compressed in the RGB spaces in a human–computer interaction and ma-
chine vision applications. 

In [11] a technique using Chebyshev bit allocation is applied to compress images in 
the YUV space: the results show that this method improves the visual quality of color 
images compressed via JPEG by 42%. A color image compression method applying a 
subsampling process to the two chroma channels and a modification algorithm to the Y 
channel is applied to color images in [12] to improve JPEG performances. 

An image compression method with a learning-base filter is applied in [13] on color 
images constructing the filter in YUV space instead of RGB space: the authors show that 
the quality of the coded images is better than that obtained using the filter in the RGB 
space. In [14], an image lossy compression algorithm in which quantization and sub-
sampling are executed in the YUV space is applied for wireless capsule endoscopy: the 
quality of the coded images is better than that obtained by executing quantization and 
subsampling in the RGB space. 

Recently, hybrid lossy color image compression methods based on Neural [15], 
Fuzzy neural [16,17], Quantum Discrete Cosine Transform [18] and Adaptive Discrete 
Wavelet Transform [19] have been proposed in the literature. These methods improve the 
quality of the decoded images, and are robust to the presence of noise, but are computa-
tionally too expensive. 

In particular, in [20], a wavelet-based color image compression method using 
trained convolutional neural network in the lifting scheme is applied to the YUV exe-
cuting the trained CNN in the Y, U, V channels separately: this method improves the 
quality of the coded images obtained using traditional wavelet-based color image com-
pression algorithms. However, the execution times are much higher than those adopted 
by applying traditional color image compression algorithms. 

In [21] an image reconstruction method performed on the YUV space is applied to 
prevent data corruption when using adversarial perturbation of the image: the results 
show that the image can be recovered on the YUV space without distortions and with 
high visual quality. 

In this paper, we propose a novel image compression algorithm in which the 
bi-dimensional First-Degree F-transform algorithm (for shorts, F1-transform) [22,23] is 
applied to code/decode color images in the YUV space. 

The bi-dimensional F-transform was used recently by various researchers for image 
and video coding. In [24], the bi-dimensional F-transform is applied to compress massive 
images: the coded images are used as input images in an image segmentation algorithm. 

In [25], an image monitoring model is proposed in which the bi-dimensional 
F-transform is used to compress gray images. 

A hybrid image compression algorithm, which combines the L1-norm and the 
bi-dimensional F-transform, is proposed in [26]: results executed on a set of gray-level 
noised images show that this method is more robust in the presence of noise than the 
canonical F-transform image compression algorithm. 

A generalization of the F-transform called high-order F-transform (Fm-transform), 
has been proposed in [27] in order to reduce the approximation error of the original 
function approximated with the inverse F-transform. In the Fm-transform, the compo-
nents of the direct high-order fuzzy transforms are polynomials of degree m, unlike the 
components of the direct F-transform (labeled as F°-transform), where they were con-
stant values. The greater the degree of the polynomial, the smaller the error of the ap-
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proximation: however, as the degree of the polynomial increases, the computational 
complexity of the algorithm increases. 

In [18] the bi-dimensional first-order degree F-transform (F1-transform) is used to 
compress images: the authors show that the quality of the coded/decoded images is bet-
ter than that obtained executing F-transform, with negligible augments of CPU time. The 
critical point of this method, unlike the F-transform and JPEG methods, is that it does not 
require the compressed image to be saved in the memory, but matrices of three coeffi-
cients of the same size related to the compressed image itself must be contained in a 
memory three times greater than that necessary to archive the compressed image. 

To solve this problem, we propose a new lossy color image compression algorithm 
in which is executed the F1-transform algorithm to code/decode color images trans-
formed in the YUV space. The transformed image in each of the three channels is parti-
tioned into blocks and each block is compressed by the bi-dimensional direct 
F1-transform, compressing the blocks of the chroma channels more. The image is sub-
sequently reconstructed by decomposing the single blocks with the use of the 
bi-dimensional inverse F1-transform. 

The main benefits of this method are as follows: 
 The use of the bi-dimensional F1-transform represents a trade-off between the qual-

ity of the compressed image and the CPU times. It reduces the information loss ob-
tained by compressing the image with the same compression rate using the 
F-transform algorithm with acceptable coding/decoding CPU time; 

 The compression of the color images is carried out in the YUV space to guarantee a 
high visual quality of the color images and solve the criticality of the F1-transform 
color image compression method in the RGB space [18] having a larger memory to 
allocate the information of the compressed image. In fact, by performing a high 
compression of the two chrominance channels, the size of the matrices in which the 
information of the compressed image is contained, is reduced in these two channels, 
and this allows us to reduce the memory allocations and CPU times. 
We compare our color lossy image compression method with the JPEG method and 

with the image compression methods based on the bi-dimensional F-transform [7,8] and 
F1-transform [22] on the RGB space and on the bi-dimensional F-transform in the YUV 
space [6]. 

In the next Section, the concepts of F-transform and F1-transform are briefly pre-
sented, and the F-transform lossy color image compression method applied in YUV space 
is shown as well. Our method is presented in Section 3. In Section 4, the comparative 
results obtained in some datasets of color images are shown and discussed. Conclusive 
discussions are contained in Section 5. 

2. Preliminaries 
2.1. The bi-Dimensional F-Transform 

Let [a, b] be a closed real interval and let {x1, x2, …, xn} be a set of points of [a, b], 
called nodes, such that x1 = a < x2 <…< xn = b. 

Let {A1,…,An} be a family of fuzzy sets of X, where Ai: [a, b] → [0, 1]: it forms a fuzzy 
partition of X id the following conditions hold: 
(1) Ai(xi) = 1 for every i =1, 2, …, n; 
(2) Ai(x) = 0 if x∉(xi − 1, xi + 1), by setting x0 = x1 = a and xn + 1 = xn = b; 
(3) Ai(x) is a continuous function over [a, b]; 
(4) Ai(x) is strictly increasing over [xi − 1, xi] for each i = 2, …, n; 
(5) Ai(x) is strictly decreasing over [xi, xi + 1] for each i = 1, …, n−1; 
(6) ∑ 𝐴௜(𝑥) = 1௡௜ୀଵ  for every x∈[a, b]. 

Let h = ୠିୟ୬ିଵ. The fuzzy partition {A1, …, An} is an uniform fuzzy partition if: 

(7) n ≥ 3; 
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(8) xi =a + h∙(i−1), for i = 1, 2, …, n; 
(9) Ai(xi−x) = Ai(xi + x) for every x ∈ [0, h] and i = 2, …, n−1; 
(10) Ai + 1(x) = Ai(x−h) for every x ∈ [xi, xi + 1] and i = 1, 2, …, n−1. 

Let f(x) be a continuous function over [a, b] and {A1, A2, …, An} be a fuzzy partition 
of [a, b]. The n-tuple F = [Fଵ, Fଶ, . . . , F୬] is called uni-dimensional direct F-transform of f with 
respect to {A1, A2, …, An} if the following holds: F୧ = ׬ ୤(୶)୅౟(୶)ୢ୶ౘ౗׬ ୅౟(୶)ୢ୶ౘ౗      i = 1, 2, …, n (1) 

The following function 𝑓ி,௡ defined for every x∈[a, b] as 

𝑓ி,௡(x) = ෍ F୧୬
୧ୀଵ A୧(x)    (2) 

is called the uni-dimensional inverse F-transform of the function f. 
The following theorem holds (cfr. [7, Theorem 2]): 

Theorem 1. Let f(x) be a continuous function over [a, b]. For every ε > 0 there exists an integer 
n(ε) and a fuzzy partition {A1, A2, …, An(ε)} of [a, b] for which holds the inequality ห𝑓(x) − 𝑓ி,௡(ఌ)(x)| < 𝜖 for every x ∈ [a, b]. 

Now, consider the discrete case where the function f is known in a set of N points P = 
{p1, ..., pN}, where pj ∈ [a, b], j = 1, 2, …, m. The set {p1, ..., pN} is called sufficiently dense with 
respect to the fixed fuzzy partition {A1, A2, …, An} if for i = 1, …, n, there exists at least an 
index j∈{1, …, m} such that Ai(pj) > 0. 

If the set P is sufficiently dense with respect to the fuzzy partition, we can define the 
discrete direct F-transform with components given as F୧ = ∑ ௙(୮ౠ)୅౟(୮ౠ)ౠొసభ∑ ୅౟(୮ౠ)ౠొసభ          i = 1, 2, …, n (3) 

and the discrete inverse F-transform as 𝑓ி,௡(p௝) = ∑ F୧୬୧ୀଵ A୧(p௝)    j = 1, …, N  (4) 

The following theorem applied to the discrete inverse F-transform holds (cfr. [7, 
Theorem 5]): 
Theorem 2. Let f(x) be a continuous function over [a, b] known in a discrete set of points P = {p1, 
..., pm}. For every ε > 0, there exists an integer n(ε) and a fuzzy partition {A1, A2, …, An(ε)} of [a, 
b], with respect to which P is sufficiently dense, for which the following inequality holds ห𝑓൫p௝൯ −  𝑓ி,௡(ఌ)൫p௝൯| < 𝜖 for j = 1, …, N. 

According to Theorem 2, the inverse fuzzy transform (4) can be used to approximate 
the function f in a point. 

Now, we consider functions in two variables. Let x1, x2, …, xn be a set of n nodes in 
[a,b] where n > 2 and x1 = a < x2 <…< xn = b, and let y1, y2, …, ym be a set of m nodes in [c,d], 
where m > 2 and and y1 = c < y2 <…< ym = d. Moreover, let A1,…,An: [a, b] → [0, 1] be a 
fuzzy partition of [a, b], B1, …, Bm: [c, d] → [0, 1] be a fuzzy partition of [c, d] and let f(x,y) 
be a function defined in the Cartesian product [a, b] × [c, d]. 

We suppose that f assumes known values in a set of points (pj, qj)∈[a, b] × [c, d], 
where i = 1, …, N and j = 1, …, m, where the set P = {p1, …, pN} is sufficiently dense with 
respect to the fuzzy partition {A1, …, An} and the set Q = {q1, …, qM} is sufficiently dense 
with respect to the fuzzy partition {B1, …, Bm}. 

In this case, we can define the bi-dimensional discrete F-transform of f, given by matrix 
[Fhk] with entries defined as Fhk = ∑ ∑ ௙(୮౟,୯ౠ)୅౞(୮౟)୆ౡ(୯ౠ)౟ొసభ౉ౠసభ∑ ∑ ୅౞(୮౟)୆ౡ(୯ౠ)౟ొసభ౉ౠసభ     h = 1, 2, …, n,  k = 1, 2, …, m (5) 
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and the bi-dimensional discrete inverse F-transform of f with respect to {A1, A2, …, An} and 
{B1, …, Bm} defined as 𝑓௡௠ி (p୧, q୨) = ∑ ∑ F୦୩୫୩ୀଵ A୦(p୧)୬୦ୀଵ B୩(q୨)    i = 1, 2, …, N,  j = 1, 2, …, M (6) 

2.2. The bi-Dimensional F1-Transform 
This paragraph introduces the concept of higher-degree fuzzy transform or 

F1-transform. 
Let Ah, h = 1, …, n, be the hth fuzzy set of the fuzzy partition {A1, …, An} defined in 

[a, b] and L2([xh − 1,xh + 1]) be the Hilbert space of square-integrable functions f,g: [xh − 1,xh + 1] ⟶ R with the inner product: 

⟨𝑓, 𝑔⟩௛ = ׬ 𝑓(x)𝑔(x)A୦(x)dx୶౞శభ୶౞షభ׬ A୦(x)dx୶౞శభ୶౞షభ     (7)

Given a integer r ³ 0, we denote with 2
rL ([xh−1,xh+1]) a linear subspace of the Hilbert 

space L2([xh−1,xh+1]) that has as an orthogonal basis the polynomials { 0
hP , 1

hP , …, r
hP } 

constructed by applying the Gram–Schmidt ortho-normalization to the linear inde-
pendent system of polynomials {1, x, x2, …, xr} defined in the interval [xh−1,xh+1]. We have 
the following: 

൞P୦଴ = 1P୦ୱାଵ = xୱାଵ − ෍ ൻxୱାଵ, P୦୨ൿൻP୦୨ , P୦୨ൿୱ
୨ୀଵ      s=1,...,r-1 (8)

The following Lemma holds (Cfr. 7, Lemma 1): 
Lemma 1. Let 𝐹௞௥be the orthogonal projection of the function f on 2

rL ([xh−1,xh+1]). Then, 𝐹௛௥(𝑥) = ෍ 𝑐௛,௜𝑃௛௦(𝑥)௥
௦ୀଵ  (9)

where 

c୦,ୱ = ⟨f, P୩୦ୱ ⟩୩ൻP୦ୱ, P୦ୱൿ୦ = ׬ 𝑓(x) P୦ୱ( x)A୦(x)dx୶ౡశభ୶ౡషభ׬ (P୦ୱ( x))ଶA୦(x)dx୶ౡశభ୶ౡషభ  (10)

F୦୰  it is the hth component of the direct Fr-transform of f. The inverse Fr-transform of 
f in a point x ∊ [a, b] is defined as 

𝑓୊,୬୰ (x) = ෍ F୦୰ A୩(x)୬
୩ୀଵ     (11)

For r = 0, we have 0
hP  = 1 and the F0-transform is given by the F-transform in one 

variable ( 0
hF  (x) = ch,0). 

For r = 1, we have 1
hP  = (x − xh) and the hth component of the F1-transform is given 

as 

1
hF (x) = ch,0 + ch,1 (x − xh) = 0

hF (x) + ch,1 (x − xh) (12)

If the function f is known in a set of N points, P = {p1, …, pN}, ch,0 and ch,1 can be dis-
cretized in the following formulas: c୦,଴ = ∑ 𝑓(p୧)A୦(p୧)୬୧ୀଵ∑ A୦(p୧)୬୧ୀଵ  (13)
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c୦,ଵ = ∑ 𝑓(p୧)(p୧ − x୦)A୦(p୧)୬୧ୀଵ∑ A୦(p୧)୬୧ୀଵ (p୧ − x୦)ଶ  (14)

The F1-transform can be extended in a bi-dimensional space. We consider the Hil-
bert space L2([xh−1, xh+1] × [yk−1, yk+1]) of square-integrable functions f: [xh − 1, xh + 1] × [yk − 1,yk + 

1]→ R with the weighted inner product: 

⟨𝑓, 𝑔⟩௛௞ = න න 𝑓(𝑥, 𝑦)𝑔(x, y)A୦(x)B୩(y)dxdy୷ౡశభ
୷ౡషభ

୶౞శభ
୶೓షభ  (15)

Two functions 𝑓, 𝑔 ∈ L2 ([xh−1, xh+1] × [yk−1, yk+1]) are orthogonal if ⟨𝑓, 𝑔⟩௛௞ = 0. 
Let f: X ⊆ R2 → Y⊆ R be a continuous bi-dimensional function defined in [a, b] × [c, 

d]. Let {A1, A2, …, An} be a fuzzy partition of [a, b] and {B1, B2, …, Bm} be a fuzzy partition 
of [c, d]. Moreover, let {(p1,q1),…, (pN,qjN)} a set of N points in which the function f is 
known, where (pj,qj)∈ [a, b] × [c, d]. Let P = {p1, …, pN} be sufficiently dense with respect 
to the fuzzy partition {A1, …, An} and Q = {q1, …, qM} be sufficiently dense with respect to 
the fuzzy partition {B1, …, Bm}. 

We can define the bi-dimensional direct F1-transform of f, with components given as F୦୩ଵ (x, y) = c୦୩଴଴ + chk10(x − x୦) + chk01(y − y୩)  (16)

where c௛௞଴଴ is the component F௛௞ of the bi-dimensional discrete direct F transform of f, 
defined via Formula (5). The three coefficients in (17) are given as 

c୦୩଴଴ = F୦୩ = ∑ 𝑓(p୨, q୨) ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ ∑ A୦(p୨) ⋅ B୩(q୨)ே௝ୀଵ    (17)

c୦୩ଵ଴ = ∑ 𝑓(p୨, q୨) ⋅ ൫p୨ − x୦൯ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ∑ ൫p୨ − x୦൯ଶ ⋅  A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ    (18)

c୦୩଴ଵ = ∑ 𝑓(p୨, q୨) ⋅ ൫q୨ − y୩൯ ⋅ A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ∑ ൫q୨ − y୩൯ଶ ⋅  A୦(p୨) ⋅ B୩(q୨)୒୨ୀଵ    (19)

The inverse F1-transform of f in a point (x,y) ∊ [a, b] × [c, d] is defined as 𝑓୊,୬ଵ (x, y) = ∑ ∑ F୦,୩ଵ A୦(x)B୩(y)௠௞ୀଵ௡௛ୀଵ , (20)

where F୦,୩ଵ (x, y) is the (h,k)th component of the bi-dimensional direct F1-transform given 
from Formula (16). 

2.3. Coding/Decoding Images using the Bidimensional F and F1-Transforms 
Let I be a gray N × M image. A pixel can be considered a data point with coordinates 

(i,j), where i = 1, 2, …, N and j = 1, 2, …, M: the value of this data point is given as the pixel 
value I(i,j). In [8], the image is normalized in [0, 1] according to the formula R(i,j) = 
I(i,j)/(L-1), where L is the number of gray levels. 

We can create a partition of this image in blocks of equal size N(B) × M(B), coded to a 
block FB of sizes n(B) × m(B), with n(B) << N(B) and m(B) << M(B), using the 
bi-dimensional direct F-transform. 

Let {A1, …, An(B)} be a fuzzy partition of the set [1,N(B)] and let {B1,…,Bm(B)} be a fuzzy 
partition of the set [1,M(B))]. Each block is compressed by the bi-dimensional direct 
F-transform: 

F୦୩୆ = ∑ ∑ R(i, j)A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ ∑ A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ    (21)

The coded image is reconstructed by merging all compressed blocks. Each block is 
decompressed using the bi-dimensional inverse F-transform. The pixel value I(i,j) in the 
block is approximated with the following value: 
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𝑓௡ಳ௠ಳிಳ (i, j) = ෍ ෍ F୦୩୆୫(୆)
୩ୀଵ A୦(i)୬(୆)

୦ୀଵ B୩(j)   (22)

The decoded image is reconstructed by merging the decompressed blocks. The 
F-transform compression and decompression algorithms are shown in the pseudocode as 
Algorithms 1 and 2, respectively. 

Algorithm 1. F1-transform image compression 
       Input:    N × M Image I with L grey levels 
                  Size of the blocks of the source image N(B) × M(B) 
                  Size of the compressed blocks n(B) × m(B) 
       Output:   n × m compressed image IC 

1. Normalize the source image I in [0, 1] 
2. Partition the source image in blocks of size N(B) × M(B) 
3. For each block 
4.    For h = 1 to n(B) 
5.        For k = 1 to m(B) 
6.            Compute the (hk)th component of the bidimensional direct F-transform by (21) 
7.        Next k 
8.    Next h 
9. Next block 
10. Merge the compressed blocks 
11. De-normalize the image 
12. Return the compressed n × m image IC 
 

Algorithm 2. F-transform image decompression 
       Input:    n × m compressed image Ic 
       Output:  N × M decoded image ID 

1. Normalize the compressed image in [0, 1] 
2. Partition the compressed image Ic in blocks of size n(B) × m(B) 
3. For each compressed block 
4.    For i = 1 to N(B) 
5.        For j = 1 to M(B) 
6.         Compute the (i,j)th pixel of the decoded block by the bidimensional inverse F-transform (22) 
7.        Next j 
8.    Next i 
9. Next compressed block 
10. Merge the decompressed blocks 
11. De-normalize the decompressed image 
12. Return the decompressed N × M image ID 

In [22] an improvement in the quality of the decompressed image is accomplished 
using the bi-dimensional F1-transform. The blocks are compressed by using the 
bi-dimensional direct F1-transform: F୦୩ଵ୆ = c୦୩଴଴ + chk10(i − h) + chk01(j − k)    (23)

where 

c୦୩଴଴ = F୦୩୆ = ∑ ∑ R(i, j)A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ ∑ A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ    (24)



Computation 2023, 11, 191 8 of 19 
 

 

c୦୩ଵ଴ == ∑ ∑ 𝐼(i, j)|𝑖 − 𝑗|A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ A୦(i)(i − h)ଶ୒(୆)୧ୀଵ  ∑ B୩(j)୑(୆)୨ୀଵ    (25)

c୦୩଴ଵ == ∑ ∑ 𝐼(i, j)|𝑗 − 𝑘|A୦(i)B୩(j)୒(୆)୧ୀଵ୑(୆)୨ୀଵ∑ B୩(j)(j − k)ଶ୑(୆)୨ୀଵ  ∑ A୦(i)୒(୆)୧ୀଵ    (26)

The three coefficients c଴଴, cଵ଴ and c଴ଵ are constructed by merging the coefficients 
of each block and finally stored, forming the output of coding process. 

During the decompression process, the image is reconstructed by decompressing the 
block with the following bi-dimensional inverse F1-transform: 

𝑓௡ಳ௠ಳଵிಳ (i, j) = ෍ ෍ F୦୩୆୫(୆)
୩ୀଵ A୦(i)୬(୆)

୦ୀଵ B୩(j)   (27)

where the bi-dimensional direct F1-transform of the block F୦୩୆  is calculated using (23). 
The decompressed blocks are merged to form the decompressed image. The 

F1-transform compression and decompression algorithms are shown in the pseudocode 
as Algorithms 3 and 4, respectively. 

Algorithm 3. F1-transform image compression 
       Input:    N × M Image I with L grey levels 
                 Size of the blocks of the source image N(B) × M(B) 
                 Size of the compressed blocks n(B) × m(B) 
       Output:  n × m matrices of the direct F1-transform coefficients c଴଴, cଵ଴ and c଴ଵ  

1. Normalize the source image I in [0, 1] 
2. Partition the source image in blocks of size N(B) × M(B) 
3. For each block 
4.    For h = 1 to n(B) 
5.        For k = 1 to m(B) 
6.            Compute the component c୦୩଴଴  by (24) 
7.            Compute the component c୦୩ଵ଴  by (25) 
8.            Compute the component c୦୩଴ଵ  by (26) 
9.            Compute the (hk)th component of the bidimensional direct F1-transform by (26) 
10.        Next k 
11.    Next h 
12. Next block 
13. Merge the compressed blocks to obtain the n×m matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ 
14. Return the compressed n×m matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ 
 

Algorithm 4. F1-transform image decompression 
       Input:   n × m matrices of the direct F1-transform coefficients coefficients c଴଴, cଵ଴ and c଴ଵ 
                Size of the blocks of the decoded image N(B) × M(B) 
                Size of the blocks of the coded image n(B) × m(B) 
       Output:  N × M decoded image ID 

1. Partition the F1-transform coefficients c଴଴, cଵ଴ and c଴ଵin blocks of size n(B) × m(B) 
2. For each compressed block 
3.    For i = 1 to N(B) 
4.        For j = 1 to M(B) 
5.         Compute the (i,j)th pixel of the decoded block by the bidimensional inverse F1-transform (27) 
6.        Next j 
7.    Next i 
8. Next compressed block 
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9. Merge the decompressed blocks 
10. De-normalize the decompressed image 
11. Return the decompressed N × M image ID 

3. The YUV-Based F1-Transform Color Image Compression Method 
Let I be a N × M color image into L gray levels. All pixel values in bands R, G and B 

are normalized in [0, 1]. 
Considering a 256 gray levels color image and the scaled and offset version of the 

YUV color space, the source image is transformed in the YUV space via the formula (cfr. 
[28]): 

൥YUV൩ = ൥ 0.299 0.587 0.114−0.169 −0.332 0.5000.500 −0.419 −0.813൩ ൥RGB൩ + ൥16128128൩   (28)

Then, the F1-transform image compression algorithm is executed separately to the 
three normalized images Y, U and V, using a strong compression for the chroma images 
U and V. 

If N(B) and M(B) are the sizes of each block in the three channels, the blocks in the 
brightness channel are compressed with a compression rate ϱଢ଼ = ௡ೊ(୆)ൈ௠ೊ(୆)୒(୆)ൈ୑(୆)  and the blocks in the two chroma channels are compressed with a compression rate ϱ୙୚ =௡ೆೇ(୆)ൈ௠ೆೇ(୆)୒(୆)ൈ୑(୆) , where nUV(B) << nY(B) and mUV(B) << mY(B), so that ρUV << ρY. 

The F1-transform image compression algorithm will store in output for each channel 
the three matrixes of the coefficients of the bi-dimensional direct F1-transform: c଴଴ , cଵ଴ and c଴ଵ. The size of the three matrices in the brightness channel is ρY (N × M) and the 
size of the three matrices in each of the two chroma channels is ρUV (N × M). 

By choosing suitable brightness and chroma compression rates, it is possible to re-
duce the memory capacity necessary to store the direct F1-transform coefficients in the 
RGB space. 

For example, suppose we execute the F1-transform image compression algorithm in 
the RGB space to compress a 256 × 256 color image by partitioning the image into 16 × 16 
blocks compressed into 4 × 4 blocks. The compression rate will be ρRGB = 0.0625 and the 
size of the matrix of each coefficient is 64 × 64. Executing the F1-transform algorithm in 
the YUV space and compressing the 16 × 16 blocks in the two chroma channels into 2 × 2 
blocks (ρUV = 0.016) and the 16 × 16 blocks in the brightness channel into 8 × 8 blocks (ρY = 
0.25), the size of the matrix of each coefficient in the U and V channels will be 32 × 32, and 
the size of the matrix of each coefficient in the Y channel will be 128 × 128. By carrying out 
the compression of the source image in the YUV space in this way, two advantages are 
obtained in terms of visual quality of the reconstructed image and in terms of the availa-
ble memory necessary to archive the coefficients of the direct F1-transforms in the three 
channels. 

Below, the YUV F1-transform color image compression algorithm (Algorithm 5) is 
shown as pseudocode. 

Algorithm 5. YUV F1-transform color image compression 
       Input:    N × M color image I with L grey levels 
                 Size of the blocks of the source image N(B) × M(B) 
                 Size of the compressed blocks in the Y channel nY(B) × mY(B) 
                 Size of the compressed blocks in the U and V channels nUV(B) × mUV(B) 
       Output:  n × m matrices of thedirect F1-transform coefficients c଴଴, cଵ଴ and c଴ଵ in the 

Y, U and channels 
1. Extract the single band images IR, IG and IB 
2. Transform the RGB images IR, IG and IB in the YUV images IY, IU and IV  by (28) 
3. Execute F1-transform image compression (IY, N(B), M(B), nY(B), mY(B))        //compress IY   
4. Execute F1-transform image compression (IU, N(B), M(B), nUV(B), mUV(B))     //compress IU         
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5. Execute F1-transform image compression (IV, N(B), M(B), nUV(B), mUV(B))     //compress IV         
6. Return the compressed matrices of the coefficients c଴଴, cଵ଴ and c଴ଵ in the bands Y, U and V 

In Figure 1 we give the flow diagram of the YUV F1-transform image compression 
algorithm. 

 
Figure 1. Flow diagram of the YUV F1-transform image compression algorithm. 

The decompression process is performed by executing the F1-transform image de-
compression algorithm in the brightness and chroma channels; to decompress the image, 
the F1-transform image decompression algorithm is executed separately for each of the 
channels Y, U and V, assigning as input the three coefficient matrices of the direct 
F1-transform and the dimensions of the original and compressed blocks. 

Then, the three decoded images IDY, IDU, and IDV are transformed in the RGB space, 
according to the formula [28]: 

൥𝑅𝐺𝐵൩ = ൥1.164 0 1.5961.164 −0.813 −0.3921.164 2.017 0 ൩ ൥𝑌 − 16𝑈 − 128𝑉 − 128൩   (29)

Finally, the decoded image in the RGB band (IDR, IDG, IDB) is returned as well. Below, 
the YUV F1-transform color image decompression algorithm (Algorithm 6) is shown as 
pseudocode. 

Algorithm 6. YUV F1-transform image decompression 
  Input:    n × m matrices of the direct F1-transform coefficients coefficients c଴଴, cଵ଴ and  c଴ଵ in the Y, U and V channels 
             Size of the blocks of the decoded image N(B) × M(B) 

                  Size of the compressed blocks in the Y channel nY(B) × mY(B) 
             Size of the compressed blocks in the U and V channels nUV(B) × mUV(B) 



Computation 2023, 11, 191 11 of 19 
 

 

       Output:  N×M decoded image ID 
1. c଴଴, cଵ଴ and c଴ଵin blocks of size nY(B) × mY(B) 
2. IDY = F1-transform image decompression (c௒଴଴, c௒ଵ଴, c௒଴ଵ, N(B), M(B), nY(B), mY(B))   //Y ch. decomp.  
3. IDU = F1-transform image decompression (c୙଴଴, c୙ଵ଴, c୙଴ଵ, N(B), M(B), nUV(B), mUV(B)) //U ch. decomp. 
4. IDV = F1-transform image decompression (c௏଴଴, c୚ଵ଴, c୚଴ଵ, N(B), M(B), nUV(B), mUV(B)) //V ch. decomp. 
5. Transform the YUV images IDY, IDU and IDV in the RGB images IDR, IDG and IDB  by (29) 
6. Return the decompressed N × M color image in the RGB space (IDR, IDG and IDB)  

In Figure 2 the flow diagram of the YUV F1-transform image decompression algo-
rithm is schematized as well. 

 
Figure 2. Flow diagram of the YUV F1-transform image decompression algorithm. 

We compare our lossy color image compression report with the JPEG algorithm [1,2] 
and the color image compression methods based on F-transform on the YUV space [6] 
and F1-transform on the RGB space [22]. 

The Peak-Signal-to-Noise index (PSNR) is used to measure the quality of the de-
coded images. In order to measure the gain obtained executing the YUV F1-transform 
algorithm with respect to another color image compression method, we measure the 
PSNR gain, expressed in a percentage and given as follows:     Gain(YUV 𝐹ଵ − transform)  = [(PSNR YUV 𝐹ଵ − transform) - (PSNR other method)] ⋅ 100(PSNR other method)  (30)

In the next Section, the results applied to the color image dataset are shown and 
discussed. 
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4. Results 
We test the YUV F1-transform lossy color image compression algorithm on the color 

image dataset provided by the University of Southern California Signal and Image Pro-
cessing Institute (USC SIPI) and published on the website http://sipi.usc.edu/database. 

The dataset is made up of over 50 color images of different sizes. For brevity, we 
show in detail the results obtained for 256 × 256 source images 4.1.04 and the 412 × 512 
source image 4.2.07 shown in Figure 3. 

Each image was compressed and decompressed by performing JPEG [2], YUV 
F-transform [6], F1-transform [22] and YUV F1-transform lossy image compression algo-
rithms. 

  
(a) (b) 

Figure 3. Source images: (a) 256 × 256 image 4.1.04; (b): 512 × 512 image 4.2.07. 

We compare the four image compression methods measuring the quality of the re-
constructed image as the compression rate changes assuming various values. The com-
pression rate used when executing YUV F-transform and YUV F1-transform is the mean 
compression rate set for each channel Y, U and V. 

In Figure 4 we show, for the original image 4.1.04, the decoded images obtained by 
executing the four algorithms setting a compression rate ρ ≈ 0.10. 

  
(a) (b) 
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(c) (d) 

Figure 4. Decoded image 4.1.04, ρ ≈ 0.10, obtained via: (a) JPEG; (b) F1-transform; (c):YUV 
F-transform; (d) YUV F1-transform. 

Figure 5 shows, for the original image 4.1.04, the decoded images obtained by exe-
cuting the four algorithms setting a compression rate ρ ≈ 0.25. 

  
(a) (b) 

  
(c) (d) 

Figure 5. Decoded image 4.1.04, ρ ≈ 0.25, obtained via: (a) JPEG; (b) F1-transform; (c):YUV 
F-transform; (d) YUV F1-transform. 

Figure 6 shows the trend of the PSNR index obtained by varying the compression 
rate. The trends obtained by executing JPEG and F1-transform are similar. However, for 
strong compressions (ρ < 0.1), the PSNR value calculated by executing JPEG decreases 
exponentially as the compression increases: this result shows that the quality of the de-
coded image obtained using JPEG drops quickly for very high compressions. The highest 
PSNR values are obtained by performing YUV F-transform and YUV F1-transform. In 
particular, the PSNR values obtained with the two methods are similar for ρ < 0.2, while, 
for lower compressions, YUV F1-transform provides decompressed images of better 
quality than those obtained with YUV F-transform. 



Computation 2023, 11, 191 14 of 19 
 

 

 
Figure 6. PSNR trend for the color image 4.1.04 obtained by executing the four color image com-
pressions algorithms. 

Table 1 shows the gain index values obtained for different compression rates. 

Table 1. Gain index of YUV F1-transform for the color image 4.1.04. 

ρ JPEG F1trRGB FtrYUV 
0.44 2.85% 2.42% 1.54% 
0.30 4.47% 4.03% 1.95% 
0.20 2.11% 1.16% 0.41% 
0.14 2.19% 1.28% 0.35% 
0.06 2.13% 1.55% 0.76% 
0.03 4.45% 2.20% 1.15% 

The gain of YUV-F1-transform compared to JPEG is always greater than 2%, re-
gardless of the compression rate; similarly, the gain of YUV-F1-transform compared to 
F1-transform in the RGB space is greater than 1% regardless of the compression rate. The 
gain of YUV-F1-transform compared to YUV-F-transform is always positive and reaches 
values greater than 1% for strong (ρ < 0.05) and weak compressions (ρ > 025). 

Now, we show the results obtained for the color image 4.2.07. In Figure 7, we show 
the decoded images obtained by executing the four algorithms via a compression rate ρ ≈ 
0.10. 

  
(a) (b) 
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(c) (d) 

Figure 7. Decoded image 4.2.07, ρ ≈ 0.10, obtained via: (a) JPEG; (b) F1-transform; (c):YUV 
F-transform; (d) YUV F1-transform. 

Figure 8 shows the decoded images of 4.2.07 obtained by executing the four algo-
rithms setting a compression rate ρ ≈ 0.25. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Decoded image 4.2.07, ρ ≈ 0.25, obtained via: (a) JPEG; (b) F1-transform; (c):YUV 
F-transform; (d) YUV F1-transform. 

In Figure 9, the trend of the PSNR index is plotted obtained by varying the com-
pression rate. The best values of PSNR are obtained by executing YUV F1-transform. The 
trend of the PSNR obtained by executing the YUV F-transform is better than the one ob-
tained by executing F-transform and JPEG. As the results obtained for the color image 
4.1.04 show, the trend of PSNR obtained by executing JPEG for the image 4.2.07 decays 
rapidly as compression increases (ρ < 0.1). 
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Figure 9. PSNR trend for the color image 4.2.07 obtained by executing the four color image com-
pression algorithms. 

Table 2 shows the gain index values obtained for different compression rates. 

Table 2. Gain index of YUV F1-transform for the color image 4.2.07. 

ρ JPEG F1trRGB FtrYUV 
0.44 3.62% 2.83% 1.64% 
0.30 5.27% 2.91% 1.47% 
0.20 3.47% 2.56% 1.62% 
0.14 5.26% 4.33% 2.03% 
0.06 5.10% 4.03% 1.89% 
0.03 6.88% 4.05% 2.76% 

The gain of YUV-F1-transform compared to JPEG is always greater than 3%, re-
gardless of the compression rate: it reaches values above 6% for strong compressions (ρ < 
0.04). The gain of YUV-F1-transform compared to F1-transform in the RGB space is 
greater than 2% regardless of the compression rate: it reaches values above 4% for ρ < 
0.15. The gain of YUV-F1-transform compared to YUV-F-transform is always greater than 
1%: it reaches values above 2% for strong compressions (ρ < 0.05). In Figure 10, the trends 
of the gain of the YUV F1-transform algorithm are plotted with respect to the other three 
color image compression algorithms, where the Gain index is calculated using formula 
(30) and is averaged for all the images of the dataset used in the comparative tests. The 
gain of the proposed method with respect to YUV F-transform is approximately equal to 
2%, regardless of the compression rate. The gain of YUV F1-transform varies from 3% for 
small compressions and to 4% for high compressions (ρ < 0.2). The gain of YUV 
F1-transform with respect to JPEG varies from 3% for small compressions to 5% for me-
dium–high compressions (0.1 < ρ < 0.2). For compression rates lower than 0.1, the Gain 
index increases quickly as the compression rate reaches about 7%. 
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Figure 10. Trend of the Gain of YUV-F1transform with respect to the other three color image com-
pression methods. 

These results show that the quality of the images coded/decoded using the 
YUV-F1-transform is higher than that obtained using YUV-F-transform, F1-transform 
and JPEG, regardless of the compression rate. 

Finally, in Table 3, we show the mean gain and the coding/decoding CPU time ob-
tained by executing the four color image compression algorithms: in order to compare 
the quality of the decoded images and the CPU times with recent image compression 
methods, the tests are also executed with respect to the CNN-based YUV color image 
compression method [20]. The average values refer to gain and CPU times measured for 
all images of the same size and for all compression rates. 

Table 3. Mean gain and coding/decoding CPU time obtained for the 256 × 256 and 512 × 512 images 
executing the four image compression algorithms. 

CPU time JPEG [2] F1trRGB [22] FtrYUV [6] CNN-YUV 
[20] F1-tr.YUV 

Gain 
256 × 256 4.45 3.49 1.87 −0.30  
512 × 512 4.68 3.60 1.98 −0.36  

Coding CPU 
time 

256 × 256 2.76 2.78 2.41 7.23 3.09 
512 × 512 5.75 5.88 5.66 16.78 6.01 

Decoding 
CPU time 

256 × 256 5.82 5.86 5.04 6.39 5.73 
512 × 512 9.52 9.85 9.12 15.65 9.56 

From the results in Table 3, we deduce the following: 
- The quality of the decoded images obtained using our method is comparable with 

those obtained by executing the wavelet-like CNN-based YUV image compression 
method and better than the ones obtained by executing JPEG, F1-transform and 
YUV-F-transform, regardless of the image size; 

- Both the coding/decoding CPU times measured by executing the YUV- F1-transform 
are comparable with those obtained via JPEG, F1-transform and YUV-F-transform. 

5. Conclusions 
A lossy color image compression process employing the bi-dimensional 

F1-transform in YUV space is proposed. The benefit of this approach is that it improves 
the quality of the reconstructed image, with acceptable CPU coding/decoding times. In 
fact, the F1-transform method retains more information from the original image than 
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other image compression methods, but at the expense of a greater amount of allocated 
memory space and longer execution times. The proposed method, operating in the YUV 
space, allows us to obtain a high-quality decompressed image without increasing the al-
located memory and the CPU times. The results show that this method improves the 
quality of the decompressed image compared to that obtained with the use of JPEG, the 
F-transform applied in YUV space and the F1-transform applied in RGB space; moreover, 
the execution times are compatible with those obtained by executing the other three color 
image compression methods. Comparisons with the CNN-based wavelet-like color im-
age compression method [20] show that the proposed method provides decoded images 
of comparable quality to those obtained with this wavelet-like method, but with much 
shorter execution times. 

In the future, we intend to adapt the YUV-F1-transform algorithm to the compres-
sion of large color images. Furthermore, we intend to extend the proposed method in 
order to optimize the lossy compression of multi-band images. 
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