In this contribution we exploit probabilistic archetypal analysis in a three-step approach involving latent Markov models to analyze discrete latent variables with a discrete-time follow-up scheme. Archetypal analysis provides class assignments that are subsequently used as single indicators in a latent Markov model to estimate the structural part. We apply the proposed strategy to a dataset concerning responses to a statistical anxiety questionnaire administered to university students attending an introductory statistical course.

Archetypal analysis and latent Markov models: A step-wise approach / Palazzo, L.; Fabbricatore, R.; Palumbo, F.. - (2023). (Intervento presentato al convegno SIS2023 - Statistical LEArning, Sustainability and Impact EvaluatioN).

Archetypal analysis and latent Markov models: A step-wise approach

Palazzo L.;Fabbricatore R.;Palumbo F.
2023

Abstract

In this contribution we exploit probabilistic archetypal analysis in a three-step approach involving latent Markov models to analyze discrete latent variables with a discrete-time follow-up scheme. Archetypal analysis provides class assignments that are subsequently used as single indicators in a latent Markov model to estimate the structural part. We apply the proposed strategy to a dataset concerning responses to a statistical anxiety questionnaire administered to university students attending an introductory statistical course.
2023
9788891935618
Archetypal analysis and latent Markov models: A step-wise approach / Palazzo, L.; Fabbricatore, R.; Palumbo, F.. - (2023). (Intervento presentato al convegno SIS2023 - Statistical LEArning, Sustainability and Impact EvaluatioN).
File in questo prodotto:
File Dimensione Formato  
SIS23_Palazzo_etal.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 276.33 kB
Formato Adobe PDF
276.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/939098
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact