In this contribution we exploit probabilistic archetypal analysis in a three-step approach involving latent Markov models to analyze discrete latent variables with a discrete-time follow-up scheme. Archetypal analysis provides class assignments that are subsequently used as single indicators in a latent Markov model to estimate the structural part. We apply the proposed strategy to a dataset concerning responses to a statistical anxiety questionnaire administered to university students attending an introductory statistical course.
Archetypal analysis and latent Markov models: A step-wise approach / Palazzo, L.; Fabbricatore, R.; Palumbo, F.. - (2023). (Intervento presentato al convegno SIS2023 - Statistical LEArning, Sustainability and Impact EvaluatioN).
Archetypal analysis and latent Markov models: A step-wise approach
Palazzo L.;Fabbricatore R.;Palumbo F.
2023
Abstract
In this contribution we exploit probabilistic archetypal analysis in a three-step approach involving latent Markov models to analyze discrete latent variables with a discrete-time follow-up scheme. Archetypal analysis provides class assignments that are subsequently used as single indicators in a latent Markov model to estimate the structural part. We apply the proposed strategy to a dataset concerning responses to a statistical anxiety questionnaire administered to university students attending an introductory statistical course.File | Dimensione | Formato | |
---|---|---|---|
SIS23_Palazzo_etal.pdf
solo utenti autorizzati
Tipologia:
Versione Editoriale (PDF)
Licenza:
Non specificato
Dimensione
276.33 kB
Formato
Adobe PDF
|
276.33 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.