We present the first set of chaotic mixing experiments performed using natural basaltic and rhyolitic melts. The mixing process is triggered by a recently developed apparatus that generates chaotic streamlines in the melts, mimicking the development of magma mixing in nature. The study of the interplay of physical dynamics and chemical exchanges between melts is carried out performing time series mixing experiments under controlled chaotic dynamic conditions. The variation of major and trace elements is studied in detail by electron microprobe and Laser Ablation ICP-MS. The mobility of each element during mixing is estimated by calculating the decrease in the concentration variance in time. Both major and trace element variances decay exponentially, with the value of exponent of the exponential function quantifying the element mobility. Our results confirm and quantify how different chemical elements homogenize in the melt at differing rates. The differential mobility of elements in the mixing system is considered to be responsible for the highly variable degree of correlation (linear, nonlinear, or scattered) of chemical elements in many published inter-elemental plots. Elements with similar mobility tend to be linearly correlated, whereas, as the difference in mobility increases, the plots become progressively more nonlinear and/or scattered. The results from this study indicate that the decay of concentration variance is in fact a robust tool for obtaining new insights into chemical exchanges during mixing of silicate melts. Concentration variance is (in a single measure) an expression of the influence of all possible factors (e.g., viscosity, composition, and fluid dynamic regime) controlling the mobility of chemical elements and thus can be an additional petrologic tool to address the great complexity characterizing magma mixing processes.

Time evolution of chemical exchanges during mixing of rhyolitic and basaltic melts / Morgavi, Daniele; Perugini, Diego; C., Campos; W., Ertel Ingrisch; D., Dingwell. - In: CONTRIBUTIONS TO MINERALOGY AND PETROLOGY. - ISSN 0010-7999. - 166:(2013), pp. 615-638. [10.1007/s00410-013-0894-1]

Time evolution of chemical exchanges during mixing of rhyolitic and basaltic melts

Morgavi, Daniele
;
2013

Abstract

We present the first set of chaotic mixing experiments performed using natural basaltic and rhyolitic melts. The mixing process is triggered by a recently developed apparatus that generates chaotic streamlines in the melts, mimicking the development of magma mixing in nature. The study of the interplay of physical dynamics and chemical exchanges between melts is carried out performing time series mixing experiments under controlled chaotic dynamic conditions. The variation of major and trace elements is studied in detail by electron microprobe and Laser Ablation ICP-MS. The mobility of each element during mixing is estimated by calculating the decrease in the concentration variance in time. Both major and trace element variances decay exponentially, with the value of exponent of the exponential function quantifying the element mobility. Our results confirm and quantify how different chemical elements homogenize in the melt at differing rates. The differential mobility of elements in the mixing system is considered to be responsible for the highly variable degree of correlation (linear, nonlinear, or scattered) of chemical elements in many published inter-elemental plots. Elements with similar mobility tend to be linearly correlated, whereas, as the difference in mobility increases, the plots become progressively more nonlinear and/or scattered. The results from this study indicate that the decay of concentration variance is in fact a robust tool for obtaining new insights into chemical exchanges during mixing of silicate melts. Concentration variance is (in a single measure) an expression of the influence of all possible factors (e.g., viscosity, composition, and fluid dynamic regime) controlling the mobility of chemical elements and thus can be an additional petrologic tool to address the great complexity characterizing magma mixing processes.
2013
Time evolution of chemical exchanges during mixing of rhyolitic and basaltic melts / Morgavi, Daniele; Perugini, Diego; C., Campos; W., Ertel Ingrisch; D., Dingwell. - In: CONTRIBUTIONS TO MINERALOGY AND PETROLOGY. - ISSN 0010-7999. - 166:(2013), pp. 615-638. [10.1007/s00410-013-0894-1]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/902407
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 36
social impact