Extreme factors such as space microgravity, radiation, and magnetic field differ from those that occur on Earth. Microgravity may induce and select some microorganisms for physiological, metabolic, and/or genetic variations. This study was conducted to determine the effects of simulated microgravity conditions on the metabolism and gene expression of the probiotic bacterium Lactobacillus reuteri DSM17938. To investigate microbial response to simulated microgravity, two devices-the rotating wall vessel (RWV) and the random positioning machine (RPM)-were used. Microbial growth, reuterin production, and resistance to gastrointestinal passage were assessed, and morphological characteristics were analyzed by scanning electron microscopy. The expression of some selected genes that are responsive to stress conditions and to bile salts stress was evaluated through real-time quantitative polymerase chain reaction assay. Monitoring of bacterial growth, cell size, and shape under simulated microgravity did not reveal differences compared with 1 × g controls. On the contrary, an enhanced production of reuterin and a greater tolerance to the gastrointestinal passage were observed. Moreover, some stress genes were upregulated under RWV conditions, especially after 24 h of treatment, whereas RPM conditions seemed to determine a downregulation over time of the same stress genes. These results show that simulated microgravity could alter some physiological characteristics of L. reuteri DSM17938 with regard to tolerance toward stress conditions encountered on space missions and could be useful to elucidate the adaptation mechanisms of microbes to the space environment.

Growth of Lactobacillus reuteri DSM17938 Under Two Simulated Microgravity Systems: Changes in Reuterin Production, Gastrointestinal Passage Resistance, and Stress Genes Expression Response / Senatore, Giuliana; Mastroleo, Felice; Leys, Natalie; Mauriello, Gianluigi. - In: ASTROBIOLOGY. - ISSN 1531-1074. - 20:1(2020), pp. 1-14. [10.1089/ast.2019.2082]

Growth of Lactobacillus reuteri DSM17938 Under Two Simulated Microgravity Systems: Changes in Reuterin Production, Gastrointestinal Passage Resistance, and Stress Genes Expression Response

Senatore, Giuliana;Mauriello, Gianluigi
2020

Abstract

Extreme factors such as space microgravity, radiation, and magnetic field differ from those that occur on Earth. Microgravity may induce and select some microorganisms for physiological, metabolic, and/or genetic variations. This study was conducted to determine the effects of simulated microgravity conditions on the metabolism and gene expression of the probiotic bacterium Lactobacillus reuteri DSM17938. To investigate microbial response to simulated microgravity, two devices-the rotating wall vessel (RWV) and the random positioning machine (RPM)-were used. Microbial growth, reuterin production, and resistance to gastrointestinal passage were assessed, and morphological characteristics were analyzed by scanning electron microscopy. The expression of some selected genes that are responsive to stress conditions and to bile salts stress was evaluated through real-time quantitative polymerase chain reaction assay. Monitoring of bacterial growth, cell size, and shape under simulated microgravity did not reveal differences compared with 1 × g controls. On the contrary, an enhanced production of reuterin and a greater tolerance to the gastrointestinal passage were observed. Moreover, some stress genes were upregulated under RWV conditions, especially after 24 h of treatment, whereas RPM conditions seemed to determine a downregulation over time of the same stress genes. These results show that simulated microgravity could alter some physiological characteristics of L. reuteri DSM17938 with regard to tolerance toward stress conditions encountered on space missions and could be useful to elucidate the adaptation mechanisms of microbes to the space environment.
2020
Growth of Lactobacillus reuteri DSM17938 Under Two Simulated Microgravity Systems: Changes in Reuterin Production, Gastrointestinal Passage Resistance, and Stress Genes Expression Response / Senatore, Giuliana; Mastroleo, Felice; Leys, Natalie; Mauriello, Gianluigi. - In: ASTROBIOLOGY. - ISSN 1531-1074. - 20:1(2020), pp. 1-14. [10.1089/ast.2019.2082]
File in questo prodotto:
File Dimensione Formato  
Senatore et al.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 602.98 kB
Formato Adobe PDF
602.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/900498
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact