The COVID19 pandemic is impacting millions across the globe, with huge negative consequences in society and economy. A crucial open problem is what type of interventions should be applied to efficiently combat the spread, avoiding future waves while minimizing the negative impacts. Efficient interventions require a profound understanding of the transmission network across different regions of the country. Here, we propose an ambitious interdisciplinary research for the development and implementation of data-driven modeling, machine learning, numerical analysis and control methods, to support decision- and policy makers to assess and control the pandemic in Italy. Il progetto era tra i nove finanziati su 226 presentati, presentati in qualità di capofila dall' Università degli studi di Napoli Federico II (https://www.unina.it/-/25809546-covid-19-la-federico-ii-in-prima-linea-per-contrastarne-la-diffusione).

COMBATCOVID-19: Analisi multi-scala e modellistica computazionale della rete di trasmissione del COVID-19 per la valutazione e il controllo della pandemia in Italia

Siettos Konstantinos
;
di Bernardo Mario;
2021

Abstract

The COVID19 pandemic is impacting millions across the globe, with huge negative consequences in society and economy. A crucial open problem is what type of interventions should be applied to efficiently combat the spread, avoiding future waves while minimizing the negative impacts. Efficient interventions require a profound understanding of the transmission network across different regions of the country. Here, we propose an ambitious interdisciplinary research for the development and implementation of data-driven modeling, machine learning, numerical analysis and control methods, to support decision- and policy makers to assess and control the pandemic in Italy. Il progetto era tra i nove finanziati su 226 presentati, presentati in qualità di capofila dall' Università degli studi di Napoli Federico II (https://www.unina.it/-/25809546-covid-19-la-federico-ii-in-prima-linea-per-contrastarne-la-diffusione).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/892946
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact