The need for cost-effective adsorbents of inorganic arsenic (As(III) and As(V)) stimulates the academia to synthesize and test novel materials that can be profitably applied at large-scale in most affected areas worldwide. In this study, four different layered double hydroxides (Cu-Al-, Mg-Al-, Mg-Fe- and Zn-Al-LDH), previously synthesized and studied for As(III) removal capacity, were evaluated as potential adsorbents of As(V) from contaminated systems, in absence or presence of common inorganic anions (Cl−, F−, SO42−, HCO3− and H2PO4−). The As(V) desorption by H2PO4- was also assessed. Lastly, the As(V) adsorption capacities of the four layered double hydroxides (LDHs) were compared with those observed with As(III) in a complementary paper. All the LDHs adsorbed higher amounts of As(V) than As(III). Fe-Mg-LDH and Cu-Al-LDH showed higher adsorption capacities in comparison to Mg-Al-LDH and Zn-Al-LDH. The presence of competing anions inhibited the adsorption of two toxic anions according to the sequence: Cl− < F− < SO42− < HCO3− < < H2PO4−, in particular on Mg-Al-LDH and Zn-Al-LDH. The kinetics of As(V) desorption by H2PO4− indicated a higher occurrence of more easily desorbable As(V) on Zn-Al-LDH vs. Cu-Al-LDH. In conclusion, synthetic Cu- and Fe-based LDHs can be good candidates for an efficient removal of inorganic As, however, further studies are necessary to prove their real feasibility and safety.

A Comparison among Synthetic Layered Double Hydroxides (LDHs) as Eective Adsorbents of Inorganic Arsenic from Contaminated Soil–Water Systems / Pigna, M.; Violante, A.; Caporale, A. G.. - In: SOIL SYSTEMS. - ISSN 2571-8789. - 4:37(2020), pp. 1-12.

A Comparison among Synthetic Layered Double Hydroxides (LDHs) as Eective Adsorbents of Inorganic Arsenic from Contaminated Soil–Water Systems

Pigna M.;Violante A.;Caporale A. G.
2020

Abstract

The need for cost-effective adsorbents of inorganic arsenic (As(III) and As(V)) stimulates the academia to synthesize and test novel materials that can be profitably applied at large-scale in most affected areas worldwide. In this study, four different layered double hydroxides (Cu-Al-, Mg-Al-, Mg-Fe- and Zn-Al-LDH), previously synthesized and studied for As(III) removal capacity, were evaluated as potential adsorbents of As(V) from contaminated systems, in absence or presence of common inorganic anions (Cl−, F−, SO42−, HCO3− and H2PO4−). The As(V) desorption by H2PO4- was also assessed. Lastly, the As(V) adsorption capacities of the four layered double hydroxides (LDHs) were compared with those observed with As(III) in a complementary paper. All the LDHs adsorbed higher amounts of As(V) than As(III). Fe-Mg-LDH and Cu-Al-LDH showed higher adsorption capacities in comparison to Mg-Al-LDH and Zn-Al-LDH. The presence of competing anions inhibited the adsorption of two toxic anions according to the sequence: Cl− < F− < SO42− < HCO3− < < H2PO4−, in particular on Mg-Al-LDH and Zn-Al-LDH. The kinetics of As(V) desorption by H2PO4− indicated a higher occurrence of more easily desorbable As(V) on Zn-Al-LDH vs. Cu-Al-LDH. In conclusion, synthetic Cu- and Fe-based LDHs can be good candidates for an efficient removal of inorganic As, however, further studies are necessary to prove their real feasibility and safety.
2020
A Comparison among Synthetic Layered Double Hydroxides (LDHs) as Eective Adsorbents of Inorganic Arsenic from Contaminated Soil–Water Systems / Pigna, M.; Violante, A.; Caporale, A. G.. - In: SOIL SYSTEMS. - ISSN 2571-8789. - 4:37(2020), pp. 1-12.
File in questo prodotto:
File Dimensione Formato  
Pigna et al., 2020 (Soil Systems).pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/810410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact