Anemia of β-thalassemias is caused by ineffective erythropoiesis and reduced red cell survival. Several lines of evidence indicate that iron/heme restriction is a potential therapeutic strategy for the disease. Glycine is a key initial substrate for heme and globin synthesis. We provide evidence that bitopertin, a glycine transport inhibitor administered orally, improves anemia, reduces hemolysis, diminishes ineffective erythropoiesis, and increases red cell survival in a mouse model of β-thalassemia (Hbbth3/+ mice). Bitopertin ameliorates erythroid oxidant damage as indicated by a reduction in membrane-associated free α-globin chain aggregates, in reactive oxygen species cellular content, in membrane-bound hemichromes and in HRI activation and elF2α phosphorylation. The improvement of β-thalassemic ineffective erythropoiesis is associated with diminished mTOR activation, Rab5, Lamp1, and p62 accumulation, indicating an improved autophagy. Bitopertin also upregulates liver hepcidin and diminishes liver iron overload. The hematologic improvements achieved by bitopertin are blunted by the concomitant administration of the iron chelator deferiprone, suggesting that an excessive restriction of iron availability might negate the beneficial effects of bitopertin. These data provide important and clinically relevant insights into glycine restriction and reduced heme synthesis strategies for the treatment of β-thalassemia.

Bitopertin, a selective oral GLYT1 inhibitor, improves anemia in a mouse model of beta-thalassemia / Matte, Alessandro; Federti, Enrica; Winter, Michael; Koerner, Annette; Harmeier, Anja; Mazer, Norman; Tomka, Tomas; Di Paolo, Maria Luisa; De Falco, Luigia; Andolfo, Immacolata; Beneduce, Elisabetta; Iolascon, Achille; Macias-Garcia, Alejandra; Chen, Jane-Jane; Janin, Anne; Leboeuf, Christophe; Turrini, Francesco; Brugnara, Carlo; De Franceschi, Lucia. - In: JCI INSIGHT. - ISSN 2379-3708. - 4:22(2019). [10.1172/jci.insight.130111]

Bitopertin, a selective oral GLYT1 inhibitor, improves anemia in a mouse model of beta-thalassemia

De Falco, Luigia;Andolfo, Immacolata;Iolascon, Achille;De Franceschi, Lucia
2019

Abstract

Anemia of β-thalassemias is caused by ineffective erythropoiesis and reduced red cell survival. Several lines of evidence indicate that iron/heme restriction is a potential therapeutic strategy for the disease. Glycine is a key initial substrate for heme and globin synthesis. We provide evidence that bitopertin, a glycine transport inhibitor administered orally, improves anemia, reduces hemolysis, diminishes ineffective erythropoiesis, and increases red cell survival in a mouse model of β-thalassemia (Hbbth3/+ mice). Bitopertin ameliorates erythroid oxidant damage as indicated by a reduction in membrane-associated free α-globin chain aggregates, in reactive oxygen species cellular content, in membrane-bound hemichromes and in HRI activation and elF2α phosphorylation. The improvement of β-thalassemic ineffective erythropoiesis is associated with diminished mTOR activation, Rab5, Lamp1, and p62 accumulation, indicating an improved autophagy. Bitopertin also upregulates liver hepcidin and diminishes liver iron overload. The hematologic improvements achieved by bitopertin are blunted by the concomitant administration of the iron chelator deferiprone, suggesting that an excessive restriction of iron availability might negate the beneficial effects of bitopertin. These data provide important and clinically relevant insights into glycine restriction and reduced heme synthesis strategies for the treatment of β-thalassemia.
2019
Bitopertin, a selective oral GLYT1 inhibitor, improves anemia in a mouse model of beta-thalassemia / Matte, Alessandro; Federti, Enrica; Winter, Michael; Koerner, Annette; Harmeier, Anja; Mazer, Norman; Tomka, Tomas; Di Paolo, Maria Luisa; De Falco, Luigia; Andolfo, Immacolata; Beneduce, Elisabetta; Iolascon, Achille; Macias-Garcia, Alejandra; Chen, Jane-Jane; Janin, Anne; Leboeuf, Christophe; Turrini, Francesco; Brugnara, Carlo; De Franceschi, Lucia. - In: JCI INSIGHT. - ISSN 2379-3708. - 4:22(2019). [10.1172/jci.insight.130111]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/768904
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact