Ceratitis capitata, the Mediterranean fruit fly, is one of the most serious agricultural pests worldwide responsible for significant reduction in fruit and vegetable yields. Eradication is expensive and often not feasible. Current control methods include the application of conventional insecticides, leading to pesticide resistance and unwanted environmental e_ects. The aim of this study was to identify potential new attractants for incorporation into more environmentally sound management programs for C. capitata. In initial binary choice bioassays against control, a series of naturally occurring plant and fungal aromatic compounds and their related analogs were screened, identifying phenyllactic acid (7), estragole (24), o-eugenol (21), and 2-allylphenol (23) as promising attractants for male C. capitata. Subsequent binary choice tests evaluated five semisynthetic derivatives prepared from 2-allylphenol, but none of these were as attractive as 2-allylphenol. In binary choice bioassays with the four most attractive compounds, males were more attracted to o-eugenol (21) than to estragole (24), 2-allylphenol (23), or phenyllactic acid (7). In addition, electroantennography (EAG) was used to quantify antennal olfactory responses to the individual compounds (1–29), and the strongest EAG responses were elicited by 1-allyl-4-(trifluoromethyl)benzene (11), estragole (24), 4-allyltoluene (14), trans-anethole (9), o-eugenol (21), and 2-allylphenol (23). The compounds evaluated in the current investigation provide insight into chemical structure–function relationships and help direct future e_orts in the development of improved attractants for the detection and control of invasive C. capitata.
Laboratory evaluation of natural and synthetic aromatic compounds as potential attractants for male mediterranean fruit fly, ceratitis capitata / Tabanca, N.; Masi, M.; Epsky, N. D.; Nocera, P.; Cimmino, A.; Kendra, P. E.; Niogret, J.; Evidente, A.. - In: MOLECULES. - ISSN 1420-3049. - 24:13(2019), p. 2409. [10.3390/molecules24132409]
Laboratory evaluation of natural and synthetic aromatic compounds as potential attractants for male mediterranean fruit fly, ceratitis capitata
Masi M.Writing – Original Draft Preparation
;Nocera P.Formal Analysis
;Cimmino A.Writing – Review & Editing
;Evidente A.Supervision
2019
Abstract
Ceratitis capitata, the Mediterranean fruit fly, is one of the most serious agricultural pests worldwide responsible for significant reduction in fruit and vegetable yields. Eradication is expensive and often not feasible. Current control methods include the application of conventional insecticides, leading to pesticide resistance and unwanted environmental e_ects. The aim of this study was to identify potential new attractants for incorporation into more environmentally sound management programs for C. capitata. In initial binary choice bioassays against control, a series of naturally occurring plant and fungal aromatic compounds and their related analogs were screened, identifying phenyllactic acid (7), estragole (24), o-eugenol (21), and 2-allylphenol (23) as promising attractants for male C. capitata. Subsequent binary choice tests evaluated five semisynthetic derivatives prepared from 2-allylphenol, but none of these were as attractive as 2-allylphenol. In binary choice bioassays with the four most attractive compounds, males were more attracted to o-eugenol (21) than to estragole (24), 2-allylphenol (23), or phenyllactic acid (7). In addition, electroantennography (EAG) was used to quantify antennal olfactory responses to the individual compounds (1–29), and the strongest EAG responses were elicited by 1-allyl-4-(trifluoromethyl)benzene (11), estragole (24), 4-allyltoluene (14), trans-anethole (9), o-eugenol (21), and 2-allylphenol (23). The compounds evaluated in the current investigation provide insight into chemical structure–function relationships and help direct future e_orts in the development of improved attractants for the detection and control of invasive C. capitata.File | Dimensione | Formato | |
---|---|---|---|
Tabanca fly- Molecules-24-02409.pdf
accesso aperto
Licenza:
Dominio pubblico
Dimensione
644.58 kB
Formato
Adobe PDF
|
644.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.