ntroduction and Objectives Fabrication processes for spinal orthoses require accurate three-dimensional (3D) models of the patients' trunk. Current methods for 3D reconstruction used in this field mainly include laser or structured light scanning; these methods are time expensive and invasive, especially for patients with partial disabilities. Therefore, a theoretically instant system for data acquisition of anatomical structure is highly desirable. The objective of this work is to show the feasibility of using digital photogrammetry for human body digitization to generate accurate 3D models of the patients' trunk for spinal orthoses fabrication. Materials and Methods Multiple synchronized two-dimensional images of the human torso are captured from different points of view using a photogrammetric scanner. A 3D model is generated using the state-of-the-art algorithms for point cloud and surface reconstruction. The digitized model is then used as input for the standard computer-aided design (CAD)/computer-aided manufacturing (CAM) process of fabrication. R4D from Rodin4D is used as prosthetics and orthotics CAD software. A robotic cell constituted by a six-axis KUKA KR 30-3 is used for milling a polyurethane foam. Vacuum forming is then adopted to generate the orthosis. Two spinal orthoses are fabricated using this approach and a classical one; then, they are evaluated using quantitative and qualitative metrics. Results The data acquisition using this approach lasts 50 milliseconds. The 3D reconstruction accuracy averages 0.21 ± 1.27 mm, which suits for the considered health care scenario. Results of the initial fitting of the orthoses fabricated with the presented method show better performances in terms of time (44%), product quality (35%), and patient experience (30%). Conclusions Digital photogrammetry can be used to enhance the data acquisition and data processing of anatomical surfaces for the CAD/CAM process of spinal orthoses. The data acquisition time, almost instant, allows an easy compliance of many patients. The data processing allows generating accurate models of the patient's body. The overall process generates orthoses with a better quality with respect to those manufactured using conventional procedures. © Copyright © 2018 American Academy of Orthotists and Prosthetists.

A Digital Photogrammetric Method to Enhance the Fabrication of Custom-Made Spinal Orthoses / Grazioso, Stanislao; Selvaggio, Mario; Caporaso, Teodorico; Di Gironimo, Giuseppe. - In: JOURNAL OF PROSTHETICS AND ORTHOTICS. - ISSN 1040-8800. - 31:2(2019), pp. 140-144. [10.1097/JPO.0000000000000244]

A Digital Photogrammetric Method to Enhance the Fabrication of Custom-Made Spinal Orthoses

Grazioso, Stanislao;Selvaggio, Mario;Caporaso, Teodorico;Di Gironimo, Giuseppe
2019

Abstract

ntroduction and Objectives Fabrication processes for spinal orthoses require accurate three-dimensional (3D) models of the patients' trunk. Current methods for 3D reconstruction used in this field mainly include laser or structured light scanning; these methods are time expensive and invasive, especially for patients with partial disabilities. Therefore, a theoretically instant system for data acquisition of anatomical structure is highly desirable. The objective of this work is to show the feasibility of using digital photogrammetry for human body digitization to generate accurate 3D models of the patients' trunk for spinal orthoses fabrication. Materials and Methods Multiple synchronized two-dimensional images of the human torso are captured from different points of view using a photogrammetric scanner. A 3D model is generated using the state-of-the-art algorithms for point cloud and surface reconstruction. The digitized model is then used as input for the standard computer-aided design (CAD)/computer-aided manufacturing (CAM) process of fabrication. R4D from Rodin4D is used as prosthetics and orthotics CAD software. A robotic cell constituted by a six-axis KUKA KR 30-3 is used for milling a polyurethane foam. Vacuum forming is then adopted to generate the orthosis. Two spinal orthoses are fabricated using this approach and a classical one; then, they are evaluated using quantitative and qualitative metrics. Results The data acquisition using this approach lasts 50 milliseconds. The 3D reconstruction accuracy averages 0.21 ± 1.27 mm, which suits for the considered health care scenario. Results of the initial fitting of the orthoses fabricated with the presented method show better performances in terms of time (44%), product quality (35%), and patient experience (30%). Conclusions Digital photogrammetry can be used to enhance the data acquisition and data processing of anatomical surfaces for the CAD/CAM process of spinal orthoses. The data acquisition time, almost instant, allows an easy compliance of many patients. The data processing allows generating accurate models of the patient's body. The overall process generates orthoses with a better quality with respect to those manufactured using conventional procedures. © Copyright © 2018 American Academy of Orthotists and Prosthetists.
2019
A Digital Photogrammetric Method to Enhance the Fabrication of Custom-Made Spinal Orthoses / Grazioso, Stanislao; Selvaggio, Mario; Caporaso, Teodorico; Di Gironimo, Giuseppe. - In: JOURNAL OF PROSTHETICS AND ORTHOTICS. - ISSN 1040-8800. - 31:2(2019), pp. 140-144. [10.1097/JPO.0000000000000244]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/749931
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact