It is known that, if $\Omega\subset\R^2$ is a convex, possibly unbounded, set, the first nontrivial Neumann eigenvalue of the Hermite operator satisfies the following inequality: $\mu_1(\Omega)\ge 1$. We investigate the equality case, by proving that $\mu_1(\Omega)=1$ if and only if $\Omega$ is a strip.

An inverse spectral problem

B. Brandolini
2018

Abstract

It is known that, if $\Omega\subset\R^2$ is a convex, possibly unbounded, set, the first nontrivial Neumann eigenvalue of the Hermite operator satisfies the following inequality: $\mu_1(\Omega)\ge 1$. We investigate the equality case, by proving that $\mu_1(\Omega)=1$ if and only if $\Omega$ is a strip.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/741614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact