Cystic fibrosis (CF) is a lethal genetic disease caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) with a prevalence of the ΔF508 mutation. Whereas the detailed mechanisms underlying disease have yet to be fully elucidated, recent breakthroughs in clinical trials have demonstrated that CFTR dysfunction can be corrected by drug-like molecules. On the basis of this success, a screening campaign was carried out, seeking new drug-like compounds able to rescue ΔF508-CFTR that led to the discovery of a novel series of correctors based on a tetrahydropyrido[4,3-d]pyrimidine core. These molecules proved to be soluble, cell-permeable, and active in a disease relevant functional-assay. The series was then further optimized with emphasis on biological data from multiple cell systems while keeping physicochemical properties under strict control. The pharmacological and ADME profile of this corrector series hold promise for the development of more efficacious compounds to be explored for therapeutic use in CF.

Novel Hits in the Correction of δf508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Protein: Synthesis, Pharmacological, and ADME Evaluation of Tetrahydropyrido[4,3-d]pyrimidines for the Potential Treatment of Cystic Fibrosis / Pesci, Elisabetta; Bettinetti, Laura; Fanti, Paola; Galietta, Luis J. V.; La Rosa, Salvatore; Magnoni, Letizia; Pedemonte, Nicoletta; Sardone, Gian Luca; Maccari, Laura. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - 58:24(2015), pp. 9697-9711. [10.1021/acs.jmedchem.5b00771]

Novel Hits in the Correction of δf508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Protein: Synthesis, Pharmacological, and ADME Evaluation of Tetrahydropyrido[4,3-d]pyrimidines for the Potential Treatment of Cystic Fibrosis

Galietta, Luis J. V.;
2015

Abstract

Cystic fibrosis (CF) is a lethal genetic disease caused by mutations of the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) with a prevalence of the ΔF508 mutation. Whereas the detailed mechanisms underlying disease have yet to be fully elucidated, recent breakthroughs in clinical trials have demonstrated that CFTR dysfunction can be corrected by drug-like molecules. On the basis of this success, a screening campaign was carried out, seeking new drug-like compounds able to rescue ΔF508-CFTR that led to the discovery of a novel series of correctors based on a tetrahydropyrido[4,3-d]pyrimidine core. These molecules proved to be soluble, cell-permeable, and active in a disease relevant functional-assay. The series was then further optimized with emphasis on biological data from multiple cell systems while keeping physicochemical properties under strict control. The pharmacological and ADME profile of this corrector series hold promise for the development of more efficacious compounds to be explored for therapeutic use in CF.
2015
Novel Hits in the Correction of δf508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Protein: Synthesis, Pharmacological, and ADME Evaluation of Tetrahydropyrido[4,3-d]pyrimidines for the Potential Treatment of Cystic Fibrosis / Pesci, Elisabetta; Bettinetti, Laura; Fanti, Paola; Galietta, Luis J. V.; La Rosa, Salvatore; Magnoni, Letizia; Pedemonte, Nicoletta; Sardone, Gian Luca; Maccari, Laura. - In: JOURNAL OF MEDICINAL CHEMISTRY. - ISSN 0022-2623. - 58:24(2015), pp. 9697-9711. [10.1021/acs.jmedchem.5b00771]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/728870
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact