From the culture filtrates of Diaporthella cryptica, an emerging hazelnut pathogen, 2-hydroxy-3-phenylpropanoate methyl ester and its 3-(4-hydroxyphenyl) and 3-(1H-indol-3-yl) analogues, named crypticins A-C, were isolated together with the well-known tyrosol. Crypticins A-C were identified by spectroscopic (essentially nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry) methods. The R absolute configuration (AC) of crypticin A was determined by comparing its optical rotation and electronic circular dichroism (ECD) spectrum with those of papuline, the methyl ester of (-)(S)-phenyllactic acid isolated as the main phytotoxin of Pseudomonas syringae pv. papulans, responsible for apple blister spot. The ACs of crypticins B and C were determined by time-dependent density functional theory calculations of their ECD spectra. Papuline and the new metabolites herein isolated, except tyrosol, were tested at 1 mg/mL on cork oak, grapevine, hazelnut, and holm oak leaves using the leaf puncture assay. They were also tested on tomato cuttings at 0.5 and 0.05 mg/mL. In the leaf puncture assay, none of the compounds was found to be active. Crypticin C and papuline were active in the tomato cutting assay. Additionally, crypticin C displayed moderate inhibitory effect against Phytophthora cambivora. © 2018 American Chemical Society.

Phytotoxic Metabolites Produced by Diaporthella cryptica, the Causal Agent of Hazelnut Branch Canker

Cimmino, Alessio
Writing – Review & Editing
;
Nocera, Paola
Formal Analysis
;
Masi, Marco
Investigation
;
Evidente, Antonio
Supervision
2018

Abstract

From the culture filtrates of Diaporthella cryptica, an emerging hazelnut pathogen, 2-hydroxy-3-phenylpropanoate methyl ester and its 3-(4-hydroxyphenyl) and 3-(1H-indol-3-yl) analogues, named crypticins A-C, were isolated together with the well-known tyrosol. Crypticins A-C were identified by spectroscopic (essentially nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry) methods. The R absolute configuration (AC) of crypticin A was determined by comparing its optical rotation and electronic circular dichroism (ECD) spectrum with those of papuline, the methyl ester of (-)(S)-phenyllactic acid isolated as the main phytotoxin of Pseudomonas syringae pv. papulans, responsible for apple blister spot. The ACs of crypticins B and C were determined by time-dependent density functional theory calculations of their ECD spectra. Papuline and the new metabolites herein isolated, except tyrosol, were tested at 1 mg/mL on cork oak, grapevine, hazelnut, and holm oak leaves using the leaf puncture assay. They were also tested on tomato cuttings at 0.5 and 0.05 mg/mL. In the leaf puncture assay, none of the compounds was found to be active. Crypticin C and papuline were active in the tomato cutting assay. Additionally, crypticin C displayed moderate inhibitory effect against Phytophthora cambivora. © 2018 American Chemical Society.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/717288
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact