The planning of a rail system requires the definition of travel demand in terms of passengers (or freight) flows for sizing physical and technological elements (such as number of trains, signalling system type, length and width of platforms). Moreover, once a system has been set up and functional elements have been acquired, system management in terms of services and related timetables requires knowledge of travel demand flows. Much has been written about the methods and techniques for estimating travel demand by means of analytical models (calibrated by surveys), statistical processing of survey data and/or correcting model results by using properly collected traffic counts. However, whatever the adopted approach, it is necessary to proceed with survey campaigns to acquire experimental data. Obviously, the greater the number of detected data (and related acquisition costs and times), the greater the accuracy of travel demand estimations. Hence, in real cases, a fair compromise between survey costs and estimation accuracy has to be struck. In this context, we propose an analytical methodology for identifying space-time relations between passenger counts to reduce the amount of data to be surveyed without affecting estimation accuracy. In particular, our proposal is based on defining analytical functions to provide boarding and alighting flows depending on the station (space component) and the time period (time component) in question. Finally, in order to show the feasibility of the proposed methodology and related improvements with respect to traditional approaches, we applied our proposal to the case of a real metro line in Naples (Italy) by comparing different levels of detail in passenger surveys.

An analytical methodology for extending passenger counts in a metro system

BOTTE, MARILISA;D'ACIERNO, LUCA
2017

Abstract

The planning of a rail system requires the definition of travel demand in terms of passengers (or freight) flows for sizing physical and technological elements (such as number of trains, signalling system type, length and width of platforms). Moreover, once a system has been set up and functional elements have been acquired, system management in terms of services and related timetables requires knowledge of travel demand flows. Much has been written about the methods and techniques for estimating travel demand by means of analytical models (calibrated by surveys), statistical processing of survey data and/or correcting model results by using properly collected traffic counts. However, whatever the adopted approach, it is necessary to proceed with survey campaigns to acquire experimental data. Obviously, the greater the number of detected data (and related acquisition costs and times), the greater the accuracy of travel demand estimations. Hence, in real cases, a fair compromise between survey costs and estimation accuracy has to be struck. In this context, we propose an analytical methodology for identifying space-time relations between passenger counts to reduce the amount of data to be surveyed without affecting estimation accuracy. In particular, our proposal is based on defining analytical functions to provide boarding and alighting flows depending on the station (space component) and the time period (time component) in question. Finally, in order to show the feasibility of the proposed methodology and related improvements with respect to traditional approaches, we applied our proposal to the case of a real metro line in Naples (Italy) by comparing different levels of detail in passenger surveys.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/657255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact