Groundwater recharge assessment of karst aquifers, at various spatial and temporal scales, is a major scientific topic of current importance, since these aquifers play an essential role for both socio-economic development and fluvial ecosystems. In this study, groundwater recharge was estimated at local and episodic scales in a representative perched karst aquifer in a region of southern Italy with a Mediterranean climate. The research utilized measurements of precipitation, air temperature, soil water content, and water-table depth, obtained in 2008 at the Acqua della Madonna test area (Terminio Mount karst aquifer, Campania region). At this location the aquifer is overlain by ash-fall pyroclastic soils. The Episodic Master Recession (EMR) method, an improved version of the Water Table Fluctuation (WTF) method, was applied to estimate the amount of recharge generated episodically by individual rainfall events. The method also quantifies the amount of precipitation generating each recharge episode, thus permitting calculation of the Recharge to the Precipitation Ratio (RPR) on a storm-by-storm basis. Depending on the seasonally varying air temperature, evapotranspiration, and precipitation patterns, calculated values of RPR varied between 35% and 97% among the individual episodes. A multiple linear correlation of the RPR with both the average intensity of recharging rainfall events and the antecedent soil water content was calculated. Given the relatively easy measurability of precipitation and soil water content, such an empirical model would have great hydrogeological and practical utility. It would facilitate short-term forecasting of recharge in karst aquifers of the Mediterranean region and other aquifers with similar hydrogeological characteristics. By establishing relationships between the RPR and climatedependent variables such as average storm intensity, it would facilitate prediction of climate-change effects on groundwater recharge. The EMR methodology could further be applied to other aquifers for evaluating the relationship of recharge to various hydrometeorological and hydrogeological processes.
Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy / Allocca, Vincenzo; DE VITA, Pantaleone; Manna, Ferdinando; Nimmo, John Robert. - In: JOURNAL OF HYDROLOGY. - ISSN 0022-1694. - 529:(2015), pp. 843-853. [10.1016/j.jhydrol.2015.08.032]
Groundwater recharge assessment at local and episodic scale in a soil mantled perched karst aquifer in southern Italy
ALLOCCA, VINCENZO;DE VITA, PANTALEONE;MANNA, FERDINANDO;
2015
Abstract
Groundwater recharge assessment of karst aquifers, at various spatial and temporal scales, is a major scientific topic of current importance, since these aquifers play an essential role for both socio-economic development and fluvial ecosystems. In this study, groundwater recharge was estimated at local and episodic scales in a representative perched karst aquifer in a region of southern Italy with a Mediterranean climate. The research utilized measurements of precipitation, air temperature, soil water content, and water-table depth, obtained in 2008 at the Acqua della Madonna test area (Terminio Mount karst aquifer, Campania region). At this location the aquifer is overlain by ash-fall pyroclastic soils. The Episodic Master Recession (EMR) method, an improved version of the Water Table Fluctuation (WTF) method, was applied to estimate the amount of recharge generated episodically by individual rainfall events. The method also quantifies the amount of precipitation generating each recharge episode, thus permitting calculation of the Recharge to the Precipitation Ratio (RPR) on a storm-by-storm basis. Depending on the seasonally varying air temperature, evapotranspiration, and precipitation patterns, calculated values of RPR varied between 35% and 97% among the individual episodes. A multiple linear correlation of the RPR with both the average intensity of recharging rainfall events and the antecedent soil water content was calculated. Given the relatively easy measurability of precipitation and soil water content, such an empirical model would have great hydrogeological and practical utility. It would facilitate short-term forecasting of recharge in karst aquifers of the Mediterranean region and other aquifers with similar hydrogeological characteristics. By establishing relationships between the RPR and climatedependent variables such as average storm intensity, it would facilitate prediction of climate-change effects on groundwater recharge. The EMR methodology could further be applied to other aquifers for evaluating the relationship of recharge to various hydrometeorological and hydrogeological processes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.