Optical and electrical properties of carbonaceous particles produced in laboratory scale, premixed ethylene/air flames are obtained. Light absorption and Raman spectroscopy show that the change in particle nanostructure follows a graphitization trajectory as the flame richness increases. The optical band gap decreases and the size of the aromatic network in the particle increases, while the interlayer spacing between parallel layers decreases. The electrical conductivity of the materials increases by increasing flame richness in agreement to the graphitization trajectory. A non-ohmic behavior has been found and explained in terms of electron tunneling in a percolative network. Our results show that the electrical properties of flame formed carbon nanoparticles are strongly dependent on their nanostructure, and hence they have to be used carefully for the determination of particle concentration with conductometric sensors. Moreover, the dependence of the electrical properties of combustion formed particles might be useful for the development of cheap sensors for the selective detection of different classes of combustion aerosols.

Optical and electrical characterization of carbon nanoparticles produced in laminar premixed flames

DE FALCO, GIANLUIGI;PEPE, GIOVANNI PIERO;D'ANNA, ANDREA
2014

Abstract

Optical and electrical properties of carbonaceous particles produced in laboratory scale, premixed ethylene/air flames are obtained. Light absorption and Raman spectroscopy show that the change in particle nanostructure follows a graphitization trajectory as the flame richness increases. The optical band gap decreases and the size of the aromatic network in the particle increases, while the interlayer spacing between parallel layers decreases. The electrical conductivity of the materials increases by increasing flame richness in agreement to the graphitization trajectory. A non-ohmic behavior has been found and explained in terms of electron tunneling in a percolative network. Our results show that the electrical properties of flame formed carbon nanoparticles are strongly dependent on their nanostructure, and hence they have to be used carefully for the determination of particle concentration with conductometric sensors. Moreover, the dependence of the electrical properties of combustion formed particles might be useful for the development of cheap sensors for the selective detection of different classes of combustion aerosols.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/596828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 26
social impact