During the past decade, virtual screening (VS) has evolved from traditional similarity searching, which utilizes single reference compounds, into an advanced application domain for data mining and machine-learning approaches, which require large and representative training-set compounds to learn robust decision rules. The explosive growth in the amount of public domain-available chemical and biological data has generated huge effort to design, analyze, and apply novel learning methodologies. Here, I focus on machine-learning techniques within the context of ligand-based VS (LBVS). In addition, I analyze several relevant VS studies from recent publications, providing a detailed view of the current state-of-the-art in this field and highlighting not only the problematic issues, but also the successes and opportunities for further advances.
Machine-learning approaches in drug discovery: methods and applications / Lavecchia, A. - In: DRUG DISCOVERY TODAY. - ISSN 1359-6446. - 20:3(2015), pp. 318-331. [10.1016/j.drudis.2014.10.012]
Machine-learning approaches in drug discovery: methods and applications
Lavecchia, A
2015
Abstract
During the past decade, virtual screening (VS) has evolved from traditional similarity searching, which utilizes single reference compounds, into an advanced application domain for data mining and machine-learning approaches, which require large and representative training-set compounds to learn robust decision rules. The explosive growth in the amount of public domain-available chemical and biological data has generated huge effort to design, analyze, and apply novel learning methodologies. Here, I focus on machine-learning techniques within the context of ligand-based VS (LBVS). In addition, I analyze several relevant VS studies from recent publications, providing a detailed view of the current state-of-the-art in this field and highlighting not only the problematic issues, but also the successes and opportunities for further advances.File | Dimensione | Formato | |
---|---|---|---|
Lavecchia.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
1.3 MB
Formato
Adobe PDF
|
1.3 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.