We establish a quantitative isoperimetric inequality in higher codimension. In particular, we prove that for any closed (n-1)-dimensional manifold \Gamma in \R^{n+k} the following inequality $$D(\Gamma)\ge C d^2(\Gamma)$$ holds true. Here, D(\Gamma) stands for the isoperimetric gap of \Gamma, i.e. the deviation in measure of \Gamma from being a round sphere and d(\Gamma ) denotes a natural generalization of the Fraenkel asymmetry index of \Gamma to higher codimension.

The stability of Almgren's isoperimetric inequality / Fusco, Nicola. - (2013). (Intervento presentato al convegno Rolf Nevanlinna Colloquium tenutosi a Helsinki nel 5-9 Agosto 2013).

The stability of Almgren's isoperimetric inequality

FUSCO, NICOLA
2013

Abstract

We establish a quantitative isoperimetric inequality in higher codimension. In particular, we prove that for any closed (n-1)-dimensional manifold \Gamma in \R^{n+k} the following inequality $$D(\Gamma)\ge C d^2(\Gamma)$$ holds true. Here, D(\Gamma) stands for the isoperimetric gap of \Gamma, i.e. the deviation in measure of \Gamma from being a round sphere and d(\Gamma ) denotes a natural generalization of the Fraenkel asymmetry index of \Gamma to higher codimension.
2013
The stability of Almgren's isoperimetric inequality / Fusco, Nicola. - (2013). (Intervento presentato al convegno Rolf Nevanlinna Colloquium tenutosi a Helsinki nel 5-9 Agosto 2013).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/572701
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact