Most biological processes involve permanent and temporary interactions between different proteins: protein complexes often play key roles in human diseases and, as a consequence, molecules that prevent protein-protein interactions can be potential new therapeutic agents to treat diseases. Here, we describe a simplified approach by which small synthetic peptide libraries were screened to identify the inhibitors of the complex between phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes15 (PED/PEA15) and D4??, a functional domain of the phospholipase D1, that is involved in the molecular mechanisms of insulin resistance occurring in type 2 diabetes. By using an enzyme-linked immunosorbent assay (ELISA)-based screening, performed on a fully automated platform, we analyzed two simplified peptide libraries in a positional scanning format. This screening led to the identification of small peptides able to inhibit PED/PEA15-D4?? interaction. The selection of inhibitors was carried out employing combined competitive and direct experiments, through ELISA and surface plasmon resonance techniques, providing peptides with IC 50 values in the micromolar range. Our results showed that the protein complex PED/PEA15-D4?? is susceptible to peptides having H-donor groups and aromatic rings on specific positions. These small sequences can be considered as promising scaffolds that could be converted into higher-affinity inhibitor compounds. By a simplified approach small synthetic peptide libraries were screened to identify inhibitors of the complex between PED/PEA15 and D4?? that is involved in molecular mechanisms of insulin resistance in type 2 diabetes. Small peptide sequences having H-donor groups and aromatic rings on specific positions are able to inhibit the complex and are promising scaffolds that could be converted into higher-affinity inhibitor compounds

Discovery of small peptide antagonists of PED/PEA15-D4alpha interaction from simplified combinatorial libraries / Scognamiglio, P. L.; Doti, N.; Grieco, Paolo; Pedone, Carlo; Ruvo, M.; Marasco, Daniela. - In: CHEMICAL BIOLOGY & DRUG DESIGN. - ISSN 1747-0285. - 77:(2011), pp. 319-327. [10.1111/j.1747-0285.2011.01094.x]

Discovery of small peptide antagonists of PED/PEA15-D4alpha interaction from simplified combinatorial libraries

GRIECO, PAOLO;PEDONE, CARLO;MARASCO, DANIELA
2011

Abstract

Most biological processes involve permanent and temporary interactions between different proteins: protein complexes often play key roles in human diseases and, as a consequence, molecules that prevent protein-protein interactions can be potential new therapeutic agents to treat diseases. Here, we describe a simplified approach by which small synthetic peptide libraries were screened to identify the inhibitors of the complex between phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes15 (PED/PEA15) and D4??, a functional domain of the phospholipase D1, that is involved in the molecular mechanisms of insulin resistance occurring in type 2 diabetes. By using an enzyme-linked immunosorbent assay (ELISA)-based screening, performed on a fully automated platform, we analyzed two simplified peptide libraries in a positional scanning format. This screening led to the identification of small peptides able to inhibit PED/PEA15-D4?? interaction. The selection of inhibitors was carried out employing combined competitive and direct experiments, through ELISA and surface plasmon resonance techniques, providing peptides with IC 50 values in the micromolar range. Our results showed that the protein complex PED/PEA15-D4?? is susceptible to peptides having H-donor groups and aromatic rings on specific positions. These small sequences can be considered as promising scaffolds that could be converted into higher-affinity inhibitor compounds. By a simplified approach small synthetic peptide libraries were screened to identify inhibitors of the complex between PED/PEA15 and D4?? that is involved in molecular mechanisms of insulin resistance in type 2 diabetes. Small peptide sequences having H-donor groups and aromatic rings on specific positions are able to inhibit the complex and are promising scaffolds that could be converted into higher-affinity inhibitor compounds
2011
Discovery of small peptide antagonists of PED/PEA15-D4alpha interaction from simplified combinatorial libraries / Scognamiglio, P. L.; Doti, N.; Grieco, Paolo; Pedone, Carlo; Ruvo, M.; Marasco, Daniela. - In: CHEMICAL BIOLOGY & DRUG DESIGN. - ISSN 1747-0285. - 77:(2011), pp. 319-327. [10.1111/j.1747-0285.2011.01094.x]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/413023
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact