This paper focuses on the problem to find an ultrametric whose distortion is close to optimal. We introduce the Minkowski ultrametric distances of the n statistical units obtained by a hierarchical cluster method (single linkage). We consider the distortion matrix which measures the difference between the initial dissimilarity and the ultrametric approximation. We propose an algorithm which by the application of the Minkowski ultrametrics reaches a minimum approximation. The convergence of the algorithm allows us to identify when the ultrametric approximation is at the local minimum.

The progressive Single Linkage Algorithm Based on Minkowski Ultrametrics

SCIPPACERCOLA, SERGIO
2010

Abstract

This paper focuses on the problem to find an ultrametric whose distortion is close to optimal. We introduce the Minkowski ultrametric distances of the n statistical units obtained by a hierarchical cluster method (single linkage). We consider the distortion matrix which measures the difference between the initial dissimilarity and the ultrametric approximation. We propose an algorithm which by the application of the Minkowski ultrametrics reaches a minimum approximation. The convergence of the algorithm allows us to identify when the ultrametric approximation is at the local minimum.
File in questo prodotto:
File Dimensione Formato  
dataanalysis frontespizio.pdf

accesso aperto

Descrizione: frontespizio
Tipologia: Altro materiale allegato
Licenza: Accesso privato/ristretto
Dimensione 263.17 kB
Formato Adobe PDF
263.17 kB Adobe PDF Visualizza/Apri
Cladag07.pdf

non disponibili

Descrizione: articolo principale
Tipologia: Documento in Pre-print
Licenza: Accesso privato/ristretto
Dimensione 138.96 kB
Formato Adobe PDF
138.96 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/364240
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact