The RET (rearranged during transfection) protooncogene encodes a single pass transmembrane receptor that is expressed in cells derived from the neural crest and the urogenital tract. As part of a cell-surface complex, RET binds glial derived neurotrophic factor (GDNF) ligands in conjunction with GDNF-family alpha co-receptors (GFRalpha). Ligand-induced activation induces dimerization and tyrosine phosphorylation of the RET receptor with downstream activation of several signal transduction pathways. Activating germline RET mutations play a central role in the development of the multiple endocrine neoplasia (MEN) syndromes MEN2A, MEN2B, and familial medullary thyroid carcinoma (FMTC) and also in the development of the congenital abnormality Hirschsprung's disease. Approximately 50% of patients with sporadic MTC have somatic RET mutations, and a significant portion of papillary thyroid carcinomas result from chromosomal inversions or translocations, which activate RET (RET/PTC oncogenes). The RET protooncogene has a significant place in cancer prevention and treatment. Timely thyroidectomy in kindred members who have inherited a mutated RET allele, characteristic of MEN2A, MEN2B, or FMTC, can prevent MTC, the most common cause of death in these syndromes. Also, recently developed molecular therapeutics that target the RET pathway have shown activity in clinical trials of patients with advanced MTC, a disease for which there has been no effective therapy.

Targeting the RET pathway in thyroid cancer.

SANTORO, MASSIMO
2009

Abstract

The RET (rearranged during transfection) protooncogene encodes a single pass transmembrane receptor that is expressed in cells derived from the neural crest and the urogenital tract. As part of a cell-surface complex, RET binds glial derived neurotrophic factor (GDNF) ligands in conjunction with GDNF-family alpha co-receptors (GFRalpha). Ligand-induced activation induces dimerization and tyrosine phosphorylation of the RET receptor with downstream activation of several signal transduction pathways. Activating germline RET mutations play a central role in the development of the multiple endocrine neoplasia (MEN) syndromes MEN2A, MEN2B, and familial medullary thyroid carcinoma (FMTC) and also in the development of the congenital abnormality Hirschsprung's disease. Approximately 50% of patients with sporadic MTC have somatic RET mutations, and a significant portion of papillary thyroid carcinomas result from chromosomal inversions or translocations, which activate RET (RET/PTC oncogenes). The RET protooncogene has a significant place in cancer prevention and treatment. Timely thyroidectomy in kindred members who have inherited a mutated RET allele, characteristic of MEN2A, MEN2B, or FMTC, can prevent MTC, the most common cause of death in these syndromes. Also, recently developed molecular therapeutics that target the RET pathway have shown activity in clinical trials of patients with advanced MTC, a disease for which there has been no effective therapy.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/360285
Citazioni
  • ???jsp.display-item.citation.pmc??? 57
  • Scopus 152
  • ???jsp.display-item.citation.isi??? 127
social impact