Experience has shown that a crafted combination of concepts of different metaheuristics can result in robust combinatorial optimization schemes and produce higher solution quality than the individual metaheuristics themselves, especially when solving difficult real-world combinatorial optimization problems. This chapter gives an overview of different ways to hybridize GRASP (Greedy Randomized Adaptive Search Procedures) to create new and more effective metaheuristics. Several types of hybridizations are considered, involving different constructive procedures, enhanced local search algorithms, and memory structures.
Hybrid GRASP heuristics
FESTA, PAOLA;
2009
Abstract
Experience has shown that a crafted combination of concepts of different metaheuristics can result in robust combinatorial optimization schemes and produce higher solution quality than the individual metaheuristics themselves, especially when solving difficult real-world combinatorial optimization problems. This chapter gives an overview of different ways to hybridize GRASP (Greedy Randomized Adaptive Search Procedures) to create new and more effective metaheuristics. Several types of hybridizations are considered, involving different constructive procedures, enhanced local search algorithms, and memory structures.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.