BACKGROUND: Molecular diagnosis for cystic fibrosis (CF) is based on the direct identification of mutations in the CFTR gene [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7)] (detection rate about 90% with scanning procedures) and on segregation analysis of intragenic polymorphisms for carrier and prenatal diagnosis in about 20% of CF families in which 1 or both causal mutations are unknown. METHODS: We identified 3 novel intragenic polymorphic repeats (IVS3polyA, IVS4polyA, and IVS10CA repeats) in the CFTR gene and developed and validated a procedure based on the PCR followed by capillary electrophoresis for large-scale analysis of these polymorphisms and the 4 previously identified microsatellites (IVS1CA, IVS8CA, IVS17bTA, and IVS17bCA repeats) in a single run. We validated the procedure for both single- and 2-cell samples (for a possible use in preimplantation diagnosis), and on a large number of CF patients bearing different genotypes and non-CF controls. RESULTS: The allelic distribution and heterozygosity results suggest that the 3 novel polymorphisms strongly contribute to carrier and prenatal diagnosis of CF in families in which 1 or both causal mutations have not been identified. At least 1 of the 4 previously identified microsatellites was informative in 78 of 100 unrelated CF families; at least 1 of all 7 polymorphisms was informative in 98 of the families. Finally, the analysis of haplotypes for the 7 polymorphisms revealed that most CF mutations are associated with different haplotypes, suggesting multiple slippage events but a single origin for most CFTR mutations. CONCLUSIONS: The analysis of the 7 polymorphisms is a rapid and efficient tool for routine carrier, prenatal, and preimplantation diagnosis of CF.

Three novel CFTR polymorphic repeats improve segregation analysis for cystic fibrosis

BOCCIA, ANGELO;TOMAIUOLO, ROSSELLA;PAOLELLA, GIOVANNI;CASTALDO, GIUSEPPE
2009

Abstract

BACKGROUND: Molecular diagnosis for cystic fibrosis (CF) is based on the direct identification of mutations in the CFTR gene [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7)] (detection rate about 90% with scanning procedures) and on segregation analysis of intragenic polymorphisms for carrier and prenatal diagnosis in about 20% of CF families in which 1 or both causal mutations are unknown. METHODS: We identified 3 novel intragenic polymorphic repeats (IVS3polyA, IVS4polyA, and IVS10CA repeats) in the CFTR gene and developed and validated a procedure based on the PCR followed by capillary electrophoresis for large-scale analysis of these polymorphisms and the 4 previously identified microsatellites (IVS1CA, IVS8CA, IVS17bTA, and IVS17bCA repeats) in a single run. We validated the procedure for both single- and 2-cell samples (for a possible use in preimplantation diagnosis), and on a large number of CF patients bearing different genotypes and non-CF controls. RESULTS: The allelic distribution and heterozygosity results suggest that the 3 novel polymorphisms strongly contribute to carrier and prenatal diagnosis of CF in families in which 1 or both causal mutations have not been identified. At least 1 of the 4 previously identified microsatellites was informative in 78 of 100 unrelated CF families; at least 1 of all 7 polymorphisms was informative in 98 of the families. Finally, the analysis of haplotypes for the 7 polymorphisms revealed that most CF mutations are associated with different haplotypes, suggesting multiple slippage events but a single origin for most CFTR mutations. CONCLUSIONS: The analysis of the 7 polymorphisms is a rapid and efficient tool for routine carrier, prenatal, and preimplantation diagnosis of CF.
File in questo prodotto:
File Dimensione Formato  
1372.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 483.4 kB
Formato Adobe PDF
483.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/355888
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 33
social impact