Let A be a real symmetric, degenerate elliptic matrix whose degen- eracy is controlled by a weight w in the A2 or QC class, or let A be a smooth imaginary perturbation of such a matrix. We show that there is a heat kernel Wt (x, y) associated to the parabolic equation wut = −divA∇u, and Wt satisfies a certain Gaussian bound. We then use this bound to derive a number of other properties of the kernel.

The Kato problem for degenerate elliptic operators / Fiorenza, Alberto; Sbordone, Carlo. - (2009).

The Kato problem for degenerate elliptic operators

FIORENZA, ALBERTO;SBORDONE, CARLO
2009

Abstract

Let A be a real symmetric, degenerate elliptic matrix whose degen- eracy is controlled by a weight w in the A2 or QC class, or let A be a smooth imaginary perturbation of such a matrix. We show that there is a heat kernel Wt (x, y) associated to the parabolic equation wut = −divA∇u, and Wt satisfies a certain Gaussian bound. We then use this bound to derive a number of other properties of the kernel.
2009
The Kato problem for degenerate elliptic operators / Fiorenza, Alberto; Sbordone, Carlo. - (2009).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/349327
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact