Intervertebral kinematics closely relates to the functionality of the spinal segments. Direct measurement of the intervertebral kinematics in vivo is very problematic. The use of a fluoroscopic device can provide continuous screening of the lumbar tract during patient spontaneous motion, with an acceptable, low X-ray dose. The kinematic analysis is intended to be limited to planar motion. Kinematic parameters are computed from vertebral landmarks on each frame of the image sequence. Landmarks are normally selected manually in spite of the fact that this is subjective, tedious to perform and regarded as one of the major contributors to errors in the computed kinematic parameters. The aim of this work is to present an innovative method for the automatic recognition of vertebral landmarks throughout a fluoroscopic image sequence to provide an objective and more precise quantification of intervertebral kinematics. The recognition procedure is based upon comparing vertebral features in two adjacent frames by means of a cross-correlation index, which is also robust despite the low signal-to-noise ratio of the lumbar fluoroscopic images. To provide a quantitative assessment of this method a calibration model was used which consisted of two lumbar vertebrae linked by a universal joint. The reliability and accuracy of the kinematic measurements have been investigated. The errors are of the order of a millimetre for the localisation of the intervertebral centre of rotation and tenths of a degree for the intervertebral angle. Error analysis suggests that this method improves the accuracy of the intervertebral kinematic calculations and has the potential to automate the selection of anatomical landmarks. Intervertebral kinematics closely relates to the functionality of the spinal segments. Direct measurement of the intervertebral kinematics in vivo is very problematic. The use of a fluoroscopic device can provide continuous screening of the lumbar tract during patient spontaneous motion, with an acceptable, low X-ray dose. The kinematic analysis is intended to be limited to planar motion. Kinematic parameters are computed from vertebral landmarks on each frame of the image sequence. Landmarks are normally selected manually in spite of the fact that this is subjective, tedious to perform and regarded as one of the major contributors to errors in the computed kinematic parameters. The aim of this work is to present an innovative method for the automatic recognition of vertebral landmarks throughout a fluoroscopic image sequence to provide an objective and more precise quantification of intervertebral kinematics. The recognition procedure is based upon comparing vertebral features in two adjacent frames by means of a cross-correlation index, which is also robust despite the low signal-to-noise ratio of the lumbar fluoroscopic images. To provide a quantitative assessment of this method a calibration model was used which consisted of two lumbar vertebrae linked by a universal joint. The reliability and accuracy of the kinematic measurements have been investigated. The errors are of the order of a millimetre for the localization of the intervertebral centre of rotation and tenths of a degree for the intervertebral angle. Error analysis suggests that this method improves the accuracy of the intervertebral kinematic calculations and has the potential to automate the selection of anatomical landmarks

Automatic recognition of vertebral landmarks in fluoroscopic sequences for analysis of intervertebral kinematics / Bifulco, Paolo; Cesarelli, Mario; Allen, R.; Sansone, Mario; Bracale, Marcello. - In: MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING. - ISSN 0140-0118. - STAMPA. - 39:1(2001), pp. 65-75. [10.1007/BF02345268]

Automatic recognition of vertebral landmarks in fluoroscopic sequences for analysis of intervertebral kinematics.

BIFULCO, PAOLO;CESARELLI, MARIO;SANSONE, MARIO;BRACALE, MARCELLO
2001

Abstract

Intervertebral kinematics closely relates to the functionality of the spinal segments. Direct measurement of the intervertebral kinematics in vivo is very problematic. The use of a fluoroscopic device can provide continuous screening of the lumbar tract during patient spontaneous motion, with an acceptable, low X-ray dose. The kinematic analysis is intended to be limited to planar motion. Kinematic parameters are computed from vertebral landmarks on each frame of the image sequence. Landmarks are normally selected manually in spite of the fact that this is subjective, tedious to perform and regarded as one of the major contributors to errors in the computed kinematic parameters. The aim of this work is to present an innovative method for the automatic recognition of vertebral landmarks throughout a fluoroscopic image sequence to provide an objective and more precise quantification of intervertebral kinematics. The recognition procedure is based upon comparing vertebral features in two adjacent frames by means of a cross-correlation index, which is also robust despite the low signal-to-noise ratio of the lumbar fluoroscopic images. To provide a quantitative assessment of this method a calibration model was used which consisted of two lumbar vertebrae linked by a universal joint. The reliability and accuracy of the kinematic measurements have been investigated. The errors are of the order of a millimetre for the localisation of the intervertebral centre of rotation and tenths of a degree for the intervertebral angle. Error analysis suggests that this method improves the accuracy of the intervertebral kinematic calculations and has the potential to automate the selection of anatomical landmarks. Intervertebral kinematics closely relates to the functionality of the spinal segments. Direct measurement of the intervertebral kinematics in vivo is very problematic. The use of a fluoroscopic device can provide continuous screening of the lumbar tract during patient spontaneous motion, with an acceptable, low X-ray dose. The kinematic analysis is intended to be limited to planar motion. Kinematic parameters are computed from vertebral landmarks on each frame of the image sequence. Landmarks are normally selected manually in spite of the fact that this is subjective, tedious to perform and regarded as one of the major contributors to errors in the computed kinematic parameters. The aim of this work is to present an innovative method for the automatic recognition of vertebral landmarks throughout a fluoroscopic image sequence to provide an objective and more precise quantification of intervertebral kinematics. The recognition procedure is based upon comparing vertebral features in two adjacent frames by means of a cross-correlation index, which is also robust despite the low signal-to-noise ratio of the lumbar fluoroscopic images. To provide a quantitative assessment of this method a calibration model was used which consisted of two lumbar vertebrae linked by a universal joint. The reliability and accuracy of the kinematic measurements have been investigated. The errors are of the order of a millimetre for the localization of the intervertebral centre of rotation and tenths of a degree for the intervertebral angle. Error analysis suggests that this method improves the accuracy of the intervertebral kinematic calculations and has the potential to automate the selection of anatomical landmarks
2001
Automatic recognition of vertebral landmarks in fluoroscopic sequences for analysis of intervertebral kinematics / Bifulco, Paolo; Cesarelli, Mario; Allen, R.; Sansone, Mario; Bracale, Marcello. - In: MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING. - ISSN 0140-0118. - STAMPA. - 39:1(2001), pp. 65-75. [10.1007/BF02345268]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/341939
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact