The new arylthioindole (ATI) derivatives 10, 14-18, and 21-24, which bear a halogen atom or a small size ether group at position 5 of the indole moiety, were compared with the reference compounds colchicine and combretastatin A-4 for biological activity. Derivatives 10, 11, 16, and 21-24 inhibited MCF-7 cell growth with IC50 values <50 nM. A halogen atom (14-17) at position 5 caused a significant reduction in the free energy of binding of compound to tubulin, with a concomitant reduction in cytotoxicity. In contrast, methyl (21) and methoxy (22) substituents at position 5 caused an increase in cytotoxicity. Compound 16, the most potent antitubulin agent, led to a large increase (56%) in HeLa cells in the G2/M phase at 24 h, and at 48 h, 26% of the cells were hyperploid. Molecular modeling studies showed that, despite the absence of the ester moiety present in the previously examined analogues, most of the compounds bind in the colchicine site in the same orientation as the previously studied ATIs. Binding to -tubulin involved formation of a hydrogen bond between the indole and Thr179 and positioning of the trimethoxy phenyl group in a hydrophobic pocket near Cys241.

Arylthioindole Inhibitors of Tubulin Polymerization. 3. Biological Evaluation, Structure-Activity Relationships and Molecular Modeling Studies

LAVECCHIA, ANTONIO;NOVELLINO, ETTORE;
2007

Abstract

The new arylthioindole (ATI) derivatives 10, 14-18, and 21-24, which bear a halogen atom or a small size ether group at position 5 of the indole moiety, were compared with the reference compounds colchicine and combretastatin A-4 for biological activity. Derivatives 10, 11, 16, and 21-24 inhibited MCF-7 cell growth with IC50 values <50 nM. A halogen atom (14-17) at position 5 caused a significant reduction in the free energy of binding of compound to tubulin, with a concomitant reduction in cytotoxicity. In contrast, methyl (21) and methoxy (22) substituents at position 5 caused an increase in cytotoxicity. Compound 16, the most potent antitubulin agent, led to a large increase (56%) in HeLa cells in the G2/M phase at 24 h, and at 48 h, 26% of the cells were hyperploid. Molecular modeling studies showed that, despite the absence of the ester moiety present in the previously examined analogues, most of the compounds bind in the colchicine site in the same orientation as the previously studied ATIs. Binding to -tubulin involved formation of a hydrogen bond between the indole and Thr179 and positioning of the trimethoxy phenyl group in a hydrophobic pocket near Cys241.
File in questo prodotto:
File Dimensione Formato  
JMC2007.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 266.58 kB
Formato Adobe PDF
266.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/201146
Citazioni
  • ???jsp.display-item.citation.pmc??? 25
  • Scopus 169
  • ???jsp.display-item.citation.isi??? 165
social impact