The measurement of antioxidant activity was limited to soluble components to date. Functional groups, which are bound to insoluble matters, may exert antioxidant activity by a surface reaction phenomenon. This hypothesis was tested on the insoluble matters of foods, food ingredients, and Maillard reaction products (MRPs). Insoluble matters were prepared by consecutive washes with water and methanol followed by a lyophilization of the insoluble residue. The measurement was performed by a new procedure using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1- picrylhydrazil (DPPH) colored radicals. These insoluble matters always showed antioxidant activity. Alkali hydrolysis reduced up to 90% the antioxidant activity of cereal-based insoluble matters, thus confirming that fiber-bound compounds have a major role in their antioxidant activity. The antioxidant activity of the insoluble MRPs was not significantly affected by processing conditions, but severe treatments increased the ratio between insoluble and soluble matters. The contribution of insoluble matter to total antioxidant activity was limited for fruits and vegetables, but it was relevant for cerealbased foods and increased over 50% for dietary-fiber-rich ingredients.

A New Procedure To Measure the Antioxidant Activity of Insoluble Food Components.

FOGLIANO, VINCENZO;
2007

Abstract

The measurement of antioxidant activity was limited to soluble components to date. Functional groups, which are bound to insoluble matters, may exert antioxidant activity by a surface reaction phenomenon. This hypothesis was tested on the insoluble matters of foods, food ingredients, and Maillard reaction products (MRPs). Insoluble matters were prepared by consecutive washes with water and methanol followed by a lyophilization of the insoluble residue. The measurement was performed by a new procedure using 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1- picrylhydrazil (DPPH) colored radicals. These insoluble matters always showed antioxidant activity. Alkali hydrolysis reduced up to 90% the antioxidant activity of cereal-based insoluble matters, thus confirming that fiber-bound compounds have a major role in their antioxidant activity. The antioxidant activity of the insoluble MRPs was not significantly affected by processing conditions, but severe treatments increased the ratio between insoluble and soluble matters. The contribution of insoluble matter to total antioxidant activity was limited for fruits and vegetables, but it was relevant for cerealbased foods and increased over 50% for dietary-fiber-rich ingredients.
File in questo prodotto:
File Dimensione Formato  
2007 JAFC Arda Stones.pdf

non disponibili

Tipologia: Abstract
Licenza: Accesso privato/ristretto
Dimensione 726.61 kB
Formato Adobe PDF
726.61 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/104277
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 272
  • ???jsp.display-item.citation.isi??? 262
social impact