: This study investigated the phytochemical composition and biological activities of Myrtus communis essential oil (EO) from Algeria, focusing on its antimicrobial, antifungal, and insecticidal properties using in vitro and in silico approaches. Gas chromatography-mass spectrometry (GC-MS) analysis identified myrtenyl acetate (57.58%), 1,8-cineole (17.82%), and α-terpineol (6.82%) as the major constituents. M. communis EO exhibited significant antibacterial activity, particularly against Staphylococcus aureus (13.00 ± 0.70 mm) and Salmonella typhimurium (13.00 ± 1.50 mm), with moderate inhibition of Bacillus subtilis (10 ± 1.00 mm) and Escherichia coli (9.00 ± 0.70 mm), while Pseudomonas aeruginosa showed resistance. The antifungal activity was notable against Fusarium oxysporum (16.50 ± 0.50 mm), Aspergillus fumigatus (11.00 ± 1.00 mm), and Penicillium sp. (9.00 ± 0.60 mm) but ineffective against Aspergillus niger. Insecticidal activity against Tribolium castaneum was evaluated using contact toxicity, fumigation toxicity, and repellent activity assays. The EO demonstrated potent insecticidal effects, with an LC50 value of 0.029 µL/insect for contact toxicity and 162.85 µL/L air for fumigation after 96 h. Additionally, the EO exhibited strong repellent activity, achieving 99.44% repellency at a concentration of 0.23 mg/cm2 after 24 h. Density functional theory (DFT) calculations provided insights into the molecular geometry and electronic properties of the key bioactive compounds. Molecular docking studies evaluated their binding affinities to bacterial enzymes (DNA gyrase, dihydrofolate reductase6, and Gyrase B) and insecticidal targets (acetylcholinesterase), revealing strong interactions, particularly for geranyl acetate and methyleugenol. These findings highlight M. communis EO as a promising natural antimicrobial and insecticidal agent, with potential applications in plant protection and biopesticide development.
Comprehensive In Vitro and In Silico Analysis of Antimicrobial and Insecticidal Properties of Essential Oil of Myrtus communis L. from Algeria / Barboucha, Ghozlane; Rahim, Noureddine; Bramki, Amina; Boulebd, Houssem; Andolfi, Anna; Boulacheb, Khaoula; Boulacel, Amina; Salvatore, Maria Michela; Masi, Marco. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 26:10(2025), p. 4754. [10.3390/ijms26104754]
Comprehensive In Vitro and In Silico Analysis of Antimicrobial and Insecticidal Properties of Essential Oil of Myrtus communis L. from Algeria
Anna Andolfi;Maria Michela SalvatorePenultimo
;Marco Masi
Ultimo
2025
Abstract
: This study investigated the phytochemical composition and biological activities of Myrtus communis essential oil (EO) from Algeria, focusing on its antimicrobial, antifungal, and insecticidal properties using in vitro and in silico approaches. Gas chromatography-mass spectrometry (GC-MS) analysis identified myrtenyl acetate (57.58%), 1,8-cineole (17.82%), and α-terpineol (6.82%) as the major constituents. M. communis EO exhibited significant antibacterial activity, particularly against Staphylococcus aureus (13.00 ± 0.70 mm) and Salmonella typhimurium (13.00 ± 1.50 mm), with moderate inhibition of Bacillus subtilis (10 ± 1.00 mm) and Escherichia coli (9.00 ± 0.70 mm), while Pseudomonas aeruginosa showed resistance. The antifungal activity was notable against Fusarium oxysporum (16.50 ± 0.50 mm), Aspergillus fumigatus (11.00 ± 1.00 mm), and Penicillium sp. (9.00 ± 0.60 mm) but ineffective against Aspergillus niger. Insecticidal activity against Tribolium castaneum was evaluated using contact toxicity, fumigation toxicity, and repellent activity assays. The EO demonstrated potent insecticidal effects, with an LC50 value of 0.029 µL/insect for contact toxicity and 162.85 µL/L air for fumigation after 96 h. Additionally, the EO exhibited strong repellent activity, achieving 99.44% repellency at a concentration of 0.23 mg/cm2 after 24 h. Density functional theory (DFT) calculations provided insights into the molecular geometry and electronic properties of the key bioactive compounds. Molecular docking studies evaluated their binding affinities to bacterial enzymes (DNA gyrase, dihydrofolate reductase6, and Gyrase B) and insecticidal targets (acetylcholinesterase), revealing strong interactions, particularly for geranyl acetate and methyleugenol. These findings highlight M. communis EO as a promising natural antimicrobial and insecticidal agent, with potential applications in plant protection and biopesticide development.| File | Dimensione | Formato | |
|---|---|---|---|
|
ijms-26-04754.pdf
accesso aperto
Licenza:
Copyright dell'editore
Dimensione
5 MB
Formato
Adobe PDF
|
5 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


