We extend Turaev’s theory of Euler structures and torsion invariants on a 3-manifold M to the case of vector fields having generic behavior on ∂M. This allows to easily define gluings of Euler structures and to develop a completely general gluing formula for Reidemeister torsion of 3-manifolds. Lastly, we describe a combinatorial presentation of Euler structures via stream-spines, as a tool to effectively compute torsion.
A gluing formula for Reidemeister–Turaev torsion / Borghini, S.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 194:5(2015), pp. 1535-1561. [10.1007/s10231-014-0433-3]
A gluing formula for Reidemeister–Turaev torsion
Borghini S.
2015
Abstract
We extend Turaev’s theory of Euler structures and torsion invariants on a 3-manifold M to the case of vector fields having generic behavior on ∂M. This allows to easily define gluings of Euler structures and to develop a completely general gluing formula for Reidemeister torsion of 3-manifolds. Lastly, we describe a combinatorial presentation of Euler structures via stream-spines, as a tool to effectively compute torsion.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
gluing Reidemeister-Turaev torsion.pdf
non disponibili
Licenza:
Non specificato
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


