We extend Turaev’s theory of Euler structures and torsion invariants on a 3-manifold M to the case of vector fields having generic behavior on ∂M. This allows to easily define gluings of Euler structures and to develop a completely general gluing formula for Reidemeister torsion of 3-manifolds. Lastly, we describe a combinatorial presentation of Euler structures via stream-spines, as a tool to effectively compute torsion.

A gluing formula for Reidemeister–Turaev torsion / Borghini, S.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 194:5(2015), pp. 1535-1561. [10.1007/s10231-014-0433-3]

A gluing formula for Reidemeister–Turaev torsion

Borghini S.
2015

Abstract

We extend Turaev’s theory of Euler structures and torsion invariants on a 3-manifold M to the case of vector fields having generic behavior on ∂M. This allows to easily define gluings of Euler structures and to develop a completely general gluing formula for Reidemeister torsion of 3-manifolds. Lastly, we describe a combinatorial presentation of Euler structures via stream-spines, as a tool to effectively compute torsion.
2015
A gluing formula for Reidemeister–Turaev torsion / Borghini, S.. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 0373-3114. - 194:5(2015), pp. 1535-1561. [10.1007/s10231-014-0433-3]
File in questo prodotto:
File Dimensione Formato  
gluing Reidemeister-Turaev torsion.pdf

non disponibili

Licenza: Non specificato
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/997774
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact