Recently Oguiso showed the existence of K3 surfaces that admit a fixed point free automorphism of positive entropy. The K3 surfaces used by Oguiso have a particular rank two Picard lattice. We show, using results of Beauville, that these surfaces are therefore determinantal quartic surfaces. Long ago, Cayley constructed an automorphism of such determinantal surfaces. We show that Cayley's automorphism coincides with Oguiso's free automorphism. We also exhibit an explicit example of a determinantal quartic whose Picard lattice has exactly rank two and for which we thus have an explicit description of the automorphism.

The Cayley-Oguiso automorphism of positive entropy on a K3 surface / Festi, D.; Garbagnati, A.; Van Geemen, B.; Van Luijk, R.. - In: JOURNAL OF MODERN DYNAMICS. - ISSN 1930-5311. - 7:1(2013), pp. 75-97. [10.3934/jmd.2013.7.75]

The Cayley-Oguiso automorphism of positive entropy on a K3 surface

Festi, D.;
2013

Abstract

Recently Oguiso showed the existence of K3 surfaces that admit a fixed point free automorphism of positive entropy. The K3 surfaces used by Oguiso have a particular rank two Picard lattice. We show, using results of Beauville, that these surfaces are therefore determinantal quartic surfaces. Long ago, Cayley constructed an automorphism of such determinantal surfaces. We show that Cayley's automorphism coincides with Oguiso's free automorphism. We also exhibit an explicit example of a determinantal quartic whose Picard lattice has exactly rank two and for which we thus have an explicit description of the automorphism.
2013
The Cayley-Oguiso automorphism of positive entropy on a K3 surface / Festi, D.; Garbagnati, A.; Van Geemen, B.; Van Luijk, R.. - In: JOURNAL OF MODERN DYNAMICS. - ISSN 1930-5311. - 7:1(2013), pp. 75-97. [10.3934/jmd.2013.7.75]
File in questo prodotto:
File Dimensione Formato  
11.Cayley-Oguiso.pdf

non disponibili

Licenza: Non specificato
Dimensione 4.59 MB
Formato Adobe PDF
4.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/997771
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact