We present extensions of rigidity estimates and of Korn’s inequality to the setting of (mixed) variable exponents growth. The proof techniques, based on a classical covering argument, rely on the log-Hölder continuity of the exponent to get uniform regularity estimates on each cell of the cover, and on an extension result à la Nitsche in Sobolev spaces with variable exponents. As an application, by means of Gamma-convergence we perform a passage from nonlinear to linearized elasticity under variable subquadratic energy growth far from the energy well.

Geometric rigidity on Sobolev spaces with variable exponent and applications / Almi, Stefano; Caponi, Maicol; Friedrich, Manuel; Solombrino, Francesco. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 32:(2025). [10.1007/s00030-024-01016-4]

Geometric rigidity on Sobolev spaces with variable exponent and applications

Stefano Almi;Maicol Caponi
;
Manuel Friedrich;Francesco Solombrino
2025

Abstract

We present extensions of rigidity estimates and of Korn’s inequality to the setting of (mixed) variable exponents growth. The proof techniques, based on a classical covering argument, rely on the log-Hölder continuity of the exponent to get uniform regularity estimates on each cell of the cover, and on an extension result à la Nitsche in Sobolev spaces with variable exponents. As an application, by means of Gamma-convergence we perform a passage from nonlinear to linearized elasticity under variable subquadratic energy growth far from the energy well.
2025
Geometric rigidity on Sobolev spaces with variable exponent and applications / Almi, Stefano; Caponi, Maicol; Friedrich, Manuel; Solombrino, Francesco. - In: NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS. - ISSN 1021-9722. - 32:(2025). [10.1007/s00030-024-01016-4]
File in questo prodotto:
File Dimensione Formato  
NODEA Almi-Caponi-Friedrich-Solombrino.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 797.57 kB
Formato Adobe PDF
797.57 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/997504
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact