The present study proposes a biorefinery of the macroalgae Ulva, focusing on evaluating two different morphologies of the species (foliose and tubular) during acidogenic fermentation in fed-batch reactors. Stage 1 of the study evaluates lyophilised foliose and tubular Ulva, whilst Stage 2 analyses the impact of ulvan extraction on volatile fatty acids yield and changes in carbohydrate availability. Acetic, propionic, and butyric acids were produced from each substrate, with peak concentrations of total VFAs recorded at 2179.5 mg HAc/L (foliose Ulva) and 2029.3 mg HAc/L (tubular Ulva) when ulvan was present. After ulvan extraction, the acidogenic fermentation of the foliose morphotype was negatively affected, reaching at most 315.3 mg HAc/L. In contrast, the extraction showed no influence on the tubular morphotype, peaking at 2165.0 mg HAc/L. Additional variations were noted in the availability of carbohydrates in each substrate during the acidogenic fermentation process. The ulvan-extracted tubular morphotype exhibited the highest peak in carbohydrate concentration (9.8 g glucose/L), whilst the ulvan-extracted foliose morphotype yielded up to 8.5 g glucose/L. This study highlights the biorefinery potential of Ulva biomass, proposing a multiple cascading approach linking multiple energy and biomolecule applications to maximise the valorisation of the biomass.

Acidogenic fermentation of Ulva in a fed-batch reactor system: tubular versus foliose biomass / Lawrence, James; Oliva, Armando; Murphy, Jerry D.; Lens, Piet N. L.. - In: ENZYME AND MICROBIAL TECHNOLOGY. - ISSN 0141-0229. - 184:(2025). [10.1016/j.enzmictec.2024.110580]

Acidogenic fermentation of Ulva in a fed-batch reactor system: tubular versus foliose biomass

Oliva, Armando
Secondo
;
2025

Abstract

The present study proposes a biorefinery of the macroalgae Ulva, focusing on evaluating two different morphologies of the species (foliose and tubular) during acidogenic fermentation in fed-batch reactors. Stage 1 of the study evaluates lyophilised foliose and tubular Ulva, whilst Stage 2 analyses the impact of ulvan extraction on volatile fatty acids yield and changes in carbohydrate availability. Acetic, propionic, and butyric acids were produced from each substrate, with peak concentrations of total VFAs recorded at 2179.5 mg HAc/L (foliose Ulva) and 2029.3 mg HAc/L (tubular Ulva) when ulvan was present. After ulvan extraction, the acidogenic fermentation of the foliose morphotype was negatively affected, reaching at most 315.3 mg HAc/L. In contrast, the extraction showed no influence on the tubular morphotype, peaking at 2165.0 mg HAc/L. Additional variations were noted in the availability of carbohydrates in each substrate during the acidogenic fermentation process. The ulvan-extracted tubular morphotype exhibited the highest peak in carbohydrate concentration (9.8 g glucose/L), whilst the ulvan-extracted foliose morphotype yielded up to 8.5 g glucose/L. This study highlights the biorefinery potential of Ulva biomass, proposing a multiple cascading approach linking multiple energy and biomolecule applications to maximise the valorisation of the biomass.
2025
Acidogenic fermentation of Ulva in a fed-batch reactor system: tubular versus foliose biomass / Lawrence, James; Oliva, Armando; Murphy, Jerry D.; Lens, Piet N. L.. - In: ENZYME AND MICROBIAL TECHNOLOGY. - ISSN 0141-0229. - 184:(2025). [10.1016/j.enzmictec.2024.110580]
File in questo prodotto:
File Dimensione Formato  
2025 - Lawrence et al. -Acidogenic fermentation of Ulva in a fed-batch reactor system, tubular versus foliose biomass.pdf

solo utenti autorizzati

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.57 MB
Formato Adobe PDF
1.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/991761
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact