: The concern for human exposure to bisphenol A (BPA) has led to the introduction of other bisphenols to be used as substitutes in industrial processes. These compounds show activity similar to BPA as endocrine disruptors and could be already widespread both in the environment and in food. To monitor their possible occurrence in the food chain, an analytical method based on affinity chromatography clean-up and UHPLC coupled to tandem mass spectrometry detection was developed and in-house validated according to European law, for simultaneous determination of 17 bisphenols in milk and blood serum from bovine and buffalo, in drinking water and in feed. The analytical performance parameters of the method for these matrices were determined. The results showed satisfactory precision in terms of relative standard deviation (3.3%-21.4%), overall good trueness as mean percentage recoveries (77.0%-119.4%), with the only exception of bisphenol PH and bisphenol S in milk and BPA diglycidyl ether in serum. The high specificity and sensitivity of the method allowed us to determine the analytes at very low concentrations, that is, 0.01-1.0 ng/mL in water, 0.1-2.0 ng/mL in milk, 0.01-1.0 ng/g in blood serum and 1.0-10.0 ng/g in feed.
Development and validation of a method for determination of 17 endocrine disrupting chemicals in milk, water, blood serum and feed by UHPLC-MS/MS / Di Marco Pisciottano, I.; Albrizio, S.; Guadagnuolo, G.; Gallo, P.. - In: FOOD ADDITIVES & CONTAMINANTS. PART A. CHEMISTRY, ANALYSIS, CONTROL, EXPOSURE & RISK ASSESSMENT. - ISSN 1944-0057. - 39:10(2022), pp. 1744-1758. [10.1080/19440049.2022.2104933]
Development and validation of a method for determination of 17 endocrine disrupting chemicals in milk, water, blood serum and feed by UHPLC-MS/MS
Di Marco Pisciottano I.;Albrizio S.;
2022
Abstract
: The concern for human exposure to bisphenol A (BPA) has led to the introduction of other bisphenols to be used as substitutes in industrial processes. These compounds show activity similar to BPA as endocrine disruptors and could be already widespread both in the environment and in food. To monitor their possible occurrence in the food chain, an analytical method based on affinity chromatography clean-up and UHPLC coupled to tandem mass spectrometry detection was developed and in-house validated according to European law, for simultaneous determination of 17 bisphenols in milk and blood serum from bovine and buffalo, in drinking water and in feed. The analytical performance parameters of the method for these matrices were determined. The results showed satisfactory precision in terms of relative standard deviation (3.3%-21.4%), overall good trueness as mean percentage recoveries (77.0%-119.4%), with the only exception of bisphenol PH and bisphenol S in milk and BPA diglycidyl ether in serum. The high specificity and sensitivity of the method allowed us to determine the analytes at very low concentrations, that is, 0.01-1.0 ng/mL in water, 0.1-2.0 ng/mL in milk, 0.01-1.0 ng/g in blood serum and 1.0-10.0 ng/g in feed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.