: Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging.

Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan / Scialò, Filippo; Sriram, Ashwin; Fernández-Ayala, Daniel; Gubina, Nina; Lõhmus, Madis; Nelson, Glyn; Logan, Angela; Cooper, Helen M; Navas, Plácido; Enríquez, Jose Antonio; Murphy, Michael P; Sanz, Alberto. - In: CELL METABOLISM. - ISSN 1932-7420. - 23:4(2016). [10.1016/j.cmet.2016.03.009]

Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan

Scialò, Filippo;
2016

Abstract

: Increased production of reactive oxygen species (ROS) has long been considered a cause of aging. However, recent studies have implicated ROS as essential secondary messengers. Here we show that the site of ROS production significantly contributes to their apparent dual nature. We report that ROS increase with age as mitochondrial function deteriorates. However, we also demonstrate that increasing ROS production specifically through respiratory complex I reverse electron transport extends Drosophila lifespan. Reverse electron transport rescued pathogenesis induced by severe oxidative stress, highlighting the importance of the site of ROS production in signaling. Furthermore, preventing ubiquinone reduction, through knockdown of PINK1, shortens lifespan and accelerates aging; phenotypes that are rescued by increasing reverse electron transport. These results illustrate that the source of a ROS signal is vital in determining its effects on cellular physiology and establish that manipulation of ubiquinone redox state is a valid strategy to delay aging.
2016
Mitochondrial ROS Produced via Reverse Electron Transport Extend Animal Lifespan / Scialò, Filippo; Sriram, Ashwin; Fernández-Ayala, Daniel; Gubina, Nina; Lõhmus, Madis; Nelson, Glyn; Logan, Angela; Cooper, Helen M; Navas, Plácido; Enríquez, Jose Antonio; Murphy, Michael P; Sanz, Alberto. - In: CELL METABOLISM. - ISSN 1932-7420. - 23:4(2016). [10.1016/j.cmet.2016.03.009]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/959474
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 268
  • ???jsp.display-item.citation.isi??? ND
social impact