Let Γ=(G,σ) be a signed graph. The spectral radius of Γ is the largest absolute value of its adjacency eigenvalues. In this paper we identify the real numbers which are limit points of spectral radii of signed graphs. This is one of the two aspects of a problem in spectral graph theory known as the Hoffman program, implemented here for signed graphs.

Limit points for the spectral radii of signed graphs / Belardo, F.; Brunetti, M.. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - 347:2(2024), pp. 1-20. [10.1016/j.disc.2023.113745]

Limit points for the spectral radii of signed graphs

Belardo F.;Brunetti M.
2024

Abstract

Let Γ=(G,σ) be a signed graph. The spectral radius of Γ is the largest absolute value of its adjacency eigenvalues. In this paper we identify the real numbers which are limit points of spectral radii of signed graphs. This is one of the two aspects of a problem in spectral graph theory known as the Hoffman program, implemented here for signed graphs.
2024
Limit points for the spectral radii of signed graphs / Belardo, F.; Brunetti, M.. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - 347:2(2024), pp. 1-20. [10.1016/j.disc.2023.113745]
File in questo prodotto:
File Dimensione Formato  
Limit points for the spectral radii of signed graphs.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 642.06 kB
Formato Adobe PDF
642.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/955581
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact