In this work, we investigate a vertically illuminated near-infrared photodetector based on a graphene layer physically embedded between a crystalline and a hydrogenated silicon layer. Under near-infrared illumination, our devices show an unforeseen increase in the thermionic current. This effect has been ascribed to the lowering of the graphene/crystalline silicon Schottky barrier as the result of an upward shift in the graphene Fermi level induced by the charge carriers released from traps localized at the graphene/amorphous silicon interface under illumination. A complex model reproducing the experimental observations has been presented and discussed. Responsivity of our devices exhibits a maximum value of 27 mA/W at 1543 nm under an optical power of 8.7 mu W, which could be further improved at lower optical power. Our findings offer new insights, highlighting at the same time a new detection mechanism which could be exploited for developing near-infrared silicon photodetectors suitable for power monitoring applications.

The Physics behind the Modulation of Thermionic Current in Photodetectors Based on Graphene Embedded between Amorphous and Crystalline Silicon / Crisci, T.; Maccagnani, P.; Moretti, L.; Summonte, C.; Gioffre, M.; Rizzoli, R.; Casalino, M.. - In: NANOMATERIALS. - ISSN 2079-4991. - 13:5(2023), p. 872. [10.3390/nano13050872]

The Physics behind the Modulation of Thermionic Current in Photodetectors Based on Graphene Embedded between Amorphous and Crystalline Silicon

Crisci T.;
2023

Abstract

In this work, we investigate a vertically illuminated near-infrared photodetector based on a graphene layer physically embedded between a crystalline and a hydrogenated silicon layer. Under near-infrared illumination, our devices show an unforeseen increase in the thermionic current. This effect has been ascribed to the lowering of the graphene/crystalline silicon Schottky barrier as the result of an upward shift in the graphene Fermi level induced by the charge carriers released from traps localized at the graphene/amorphous silicon interface under illumination. A complex model reproducing the experimental observations has been presented and discussed. Responsivity of our devices exhibits a maximum value of 27 mA/W at 1543 nm under an optical power of 8.7 mu W, which could be further improved at lower optical power. Our findings offer new insights, highlighting at the same time a new detection mechanism which could be exploited for developing near-infrared silicon photodetectors suitable for power monitoring applications.
2023
The Physics behind the Modulation of Thermionic Current in Photodetectors Based on Graphene Embedded between Amorphous and Crystalline Silicon / Crisci, T.; Maccagnani, P.; Moretti, L.; Summonte, C.; Gioffre, M.; Rizzoli, R.; Casalino, M.. - In: NANOMATERIALS. - ISSN 2079-4991. - 13:5(2023), p. 872. [10.3390/nano13050872]
File in questo prodotto:
File Dimensione Formato  
nanomaterials-13-00872.pdf

non disponibili

Licenza: Non specificato
Dimensione 3.07 MB
Formato Adobe PDF
3.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/954536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact