A novel endo-1,4-β-xylanase-encoding gene was identified in Alicyclobacillus mali FL18 and the recombinant protein, named AmXyn, was purified and biochemically characterized. The monomeric enzyme worked optimally at pH 6.6 and 80 °C on beechwood xylan with a specific activity of 440.00 ± 0.02 U/mg and a good catalytic efficiency (kcat/KM = 91.89 s-1mLmg-1). In addition, the enzyme did not display any activity on cellulose, suggesting a possible application in paper biobleaching processes. To develop an enzymatic mixture for xylan degradation, the association between AmXyn and the previously characterized β-xylosidase AmβXyl, deriving from the same microorganism, was assessed. The two enzymes had similar temperature and pH optima and showed the highest degree of synergy when AmXyn and AmβXyl were added sequentially to beechwood xylan, making this mixture cost-competitive and suitable for industrial use. Therefore, this enzymatic cocktail was also employed for the hydrolysis of wheat bran residue. TLC and HPAEC-PAD analyses revealed a high conversion rate to xylose (91.56 %), placing AmXyn and AmβXyl among the most promising biocatalysts for the saccharification of agricultural waste.

A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction / Salzano, Flora; Aulitto, Martina; Fiorentino, Gabriella; Cannella, David; Peeters, Eveline; Limauro, Danila. - In: INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. - ISSN 0141-8130. - 264:130550(2024). [10.1016/j.ijbiomac.2024.130550]

A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction

Salzano, Flora;Aulitto, Martina;Fiorentino, Gabriella;Limauro, Danila
2024

Abstract

A novel endo-1,4-β-xylanase-encoding gene was identified in Alicyclobacillus mali FL18 and the recombinant protein, named AmXyn, was purified and biochemically characterized. The monomeric enzyme worked optimally at pH 6.6 and 80 °C on beechwood xylan with a specific activity of 440.00 ± 0.02 U/mg and a good catalytic efficiency (kcat/KM = 91.89 s-1mLmg-1). In addition, the enzyme did not display any activity on cellulose, suggesting a possible application in paper biobleaching processes. To develop an enzymatic mixture for xylan degradation, the association between AmXyn and the previously characterized β-xylosidase AmβXyl, deriving from the same microorganism, was assessed. The two enzymes had similar temperature and pH optima and showed the highest degree of synergy when AmXyn and AmβXyl were added sequentially to beechwood xylan, making this mixture cost-competitive and suitable for industrial use. Therefore, this enzymatic cocktail was also employed for the hydrolysis of wheat bran residue. TLC and HPAEC-PAD analyses revealed a high conversion rate to xylose (91.56 %), placing AmXyn and AmβXyl among the most promising biocatalysts for the saccharification of agricultural waste.
2024
A novel endo-1,4-β-xylanase from Alicyclobacillus mali FL18: Biochemical characterization and its synergistic action with β-xylosidase in hemicellulose deconstruction / Salzano, Flora; Aulitto, Martina; Fiorentino, Gabriella; Cannella, David; Peeters, Eveline; Limauro, Danila. - In: INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. - ISSN 0141-8130. - 264:130550(2024). [10.1016/j.ijbiomac.2024.130550]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0141813024013539-main.pdf

accesso aperto

Licenza: Dominio pubblico
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/954291
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact